Statistical Analysis and Experimental Design

  • Roderick D. Ball


Posterior Probability Markov Chain Monte Carlo Association Mapping Spurious Association Markov Chain Monte Carlo Sampler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.5 References

  1. Akey, J., Jin, L., Xiong, M. 2000, Haplotypes vs single marker linkage disequilibrium tests: what do we gain? Eur. J. Hum. Genet. 9:291-300.CrossRefGoogle Scholar
  2. Allison, D.B. 1997, Transmission disequilibrium tests for quantitative traits. Am. J. Hum. Genet. 60:676-690.PubMedGoogle Scholar
  3. Altshuler, D., Hirschhorn, J.N., Klannemark, M., Lindgren, C.M., Vohl, M.-C., Nemesh, J., Lane, C.R., Schaffner, S.F., Bolk, S., Brewer, C., Tuomis, T., Gaudet, D., Hudson, T.J., Daly, M., Groop, L., Lander, E.S. 2000, The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26:76-80.CrossRefPubMedGoogle Scholar
  4. Bahlo, M., Thomson, R., Speed, T. 2003, Discussion of: “Ancestral inference in population genetics models with selection” by M. Stephens and P. Donnelly. Aust. NZ J. Stat. 45:427-428.Google Scholar
  5. Ball, R.D. 2001, Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian Information Criterion. Genetics 159:1351-1364.PubMedGoogle Scholar
  6. Ball, R.D. 2003, lmeSplines - an R package for fitting smoothing spline terms in LME models. R News 3/3 p24-28.
  7. Ball, R.D. 2004, ldDesign - an R package for design of experiments for detection of linkage disequi- librium.
  8. Ball, R.D. 2005: Experimental designs for reliable detection of linkage disequilibrium in unstruc- tured random population association studies. Genetics 170:859-873.
  9. Barry, D., Hartigan, J.A. 1992, Product partition models for change point problems. Ann. Stat. 20:260-279.CrossRefGoogle Scholar
  10. Bayes, T. 1763, An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. 53:370-418.CrossRefGoogle Scholar
  11. Berger, J., Berry, D. 1988, Statistical analysis and the illusion of objectivity. Am. Sci. 76:159-165.Google Scholar
  12. Berger, J.O., Sellke, T. 1987, Testing a point null hypothesis: the irreconcilability of P values and evidence (with discussion). J. Am. Stat. Assoc. 82:112-139.CrossRefGoogle Scholar
  13. Bernardo, J.M. 1999, Nested hypothesis testing: the Bayesian reference criterion. In: Bayesian Sta- tistics 6. J.M. Bernardo, J.O. Berger, A.P. Dawid, A.F.M. Smith (Eds.) Oxford University Press, Oxford, pp. 101-130 (with discussion).Google Scholar
  14. Bogdan, M., Ghosh, J.K., Doerge, R.W. 2004, Modifying the Schwarz Bayesian information criterion to locate multiple interacting quantitative trait loci. Genetics 167:989-999.CrossRefPubMedGoogle Scholar
  15. Brown, G.R., Gill, G.P., Kuntz, R.K., Langley, C.H., Neale, D.B. 2004, Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc. Natl Acad. Sci. USA 42:15255-15260.CrossRefGoogle Scholar
  16. Casella, G., Berger, R.L. 1987, Reconciling Bayesian and frequentist evidence in the one-sided test- ing problem. J. Am. Stat. Assoc. 82:106-111.CrossRefGoogle Scholar
  17. Cavalli-Sforza, L.L., Cavalli-Sforza, F. 1993, The great human diasporas - the history of diversity and evolution (Italian original Chi Siamo: La Storia della Diversit‘a Umana). ISBN 0-201-44231-0 (paperback), 1993.Google Scholar
  18. Crow, T.J. (Ed.) 2002, The speciation of modern Homo Sapiens. ISBN 0-19-726311-9 (paperback) 2002.Google Scholar
  19. Dickey, J.M. 1971, The weighted likelihood ratio, linear hypothesis on normal location parameters. Ann. Math. Stat. 42:204-223.CrossRefGoogle Scholar
  20. Drummond, A.J., Nicholls, G.K., Rodrigo, A.G., Solomon, W. 2002, Estimating mutation parame- ters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161:1307-1320.PubMedGoogle Scholar
  21. Dunner, S., Charlier, C., Farnir, F., Brouwers, B., Canon, al., 1997, Towards interbreed IBD fine mapping of the mh locus: double-muscling in the Asturiana de los Valles breed involves the same locus as in the Belgian Blue cattle breed. Mamm. Genome 8:430-435.CrossRefPubMedGoogle Scholar
  22. Emahazion, T., Feuk, L., Jobs, M., Sawyer, S.L., Fredman, al., 2001, SNP association stud- ies in Alzheimer’s disease highlight problems for complex disease analysis. Trends Genet. 17:407-413.CrossRefPubMedGoogle Scholar
  23. Falconer, D.S., Mackay, T.F.C. 1996, Introduction to Quantitative Genetics. Addison-Wesley Long- man, Harlow, England.Google Scholar
  24. Fan, R., Jung, J. 2003, High-resolution joint linkage disequilibrium and linkage mapping of quanti- tative trait loci based on Sibship data. Human Heredity 56:166-187.CrossRefPubMedGoogle Scholar
  25. Farnir, F., Grisart, B., Coppieters, W., Riquet, J., Berzi, al., 2002, Simultaneous mining of linkage and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib pedigrees: revisiting the location of a quantitative trait locus with major effect on milk production on bovine chromosome 14. Genetics 161:275-287.PubMedGoogle Scholar
  26. Fearnhead, P., Donnelly 2001, Estimating recombination rates from population genetic data. Genetics 159:1299-1318.PubMedGoogle Scholar
  27. Fisher, R.A. 1930, The Genetical Theory of Natural Selection. Clarendon Press, Oxford.Google Scholar
  28. Foley, R. 1995, Humans before humanity. ISBN 0-631-20528-4 (paperback).Google Scholar
  29. Gao, G., Hoeschele, I. 2005, Approximating identity-by-descent matrices using multiple haplotype configurations on pedigrees. Genetics 171:365-376.CrossRefPubMedGoogle Scholar
  30. Gelfand, A.E., Hills, S.E., Racine-Poon A., Smith, A.F.M. 1990, Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Am. M. Stat. Assoc. 85:972-985.CrossRefGoogle Scholar
  31. Gelman, A., Carlin, B., Stern H.S., Rubin D.B. 1995, Bayesian Data Analysis. Chapman and Hall, London.Google Scholar
  32. George, E.I., McCulloch, R.E. 1993, Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 88(423):881-889.CrossRefGoogle Scholar
  33. Gilks, W.R., Spiegelhalter, D.J., Richardson, S. (Eds.) 1996, Markov Chain Monte Carlo in Practice. Chapman and Hall, London.Google Scholar
  34. Gilmour, A.R., Cullis, B.R., Welham, S.J. 2000, ASREML Reference Manual. NSW Agriculture, Orange, Australia.Google Scholar
  35. Green, P.J. 1995, Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711-732.CrossRefGoogle Scholar
  36. Griffiths, R.C., Marjoram, P. 1997, An ancestral recombination graph. pp. 257-270. In: Progress in Population Genetics and Human Evolution. P. Donnelly and S. Tavar é (Eds.), Springer, Berlin Heidelberg New York.Google Scholar
  37. Gura, T. 2000: Can SNPs deliver on susceptibility genes? Science 293:593-595.CrossRefGoogle Scholar
  38. Hampton, T. 2000, Research Brief, Focus, 29 September 2000. Harvard University.Google Scholar
  39. Hartigan, J.A. 1990, Partition models. Commun. Stat. Theory Meth. 19:2745-2756.CrossRefGoogle Scholar
  40. Heath, S.C. 1997, Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am. J. Hum. Genet. 61:748-760.CrossRefPubMedGoogle Scholar
  41. Heath, S. 2002, Loki 2.4.5 - A package for multipoint linkage analysis on large pedigrees using reversible jump Markov chain Monte Carlo. Centre National de Genotypage, Evry Cedex, France.
  42. Hudson, R.R. 1983, Properties of a neutral allele model with intragenic recombination. Theor. Popul. Biol. 23:183-201.CrossRefPubMedGoogle Scholar
  43. Hudson, R.R. 1990, Gene genealogies and the coalescent process. Oxf. Surv. Evol. Biol. 7: 1-43.Google Scholar
  44. Jeffreys, H. 1961, Theory of probability, 3rd ed. Oxford University Press, London.Google Scholar
  45. Kingman, J.F.C. 1982, On the genealogy of large populations. J. Appl. Prob. 19A:27-43.CrossRefGoogle Scholar
  46. Kaplan, N., Morris, R. 2001, Issues concerning association studies for fine mapping a susceptibility gene for a complex disease. Genet. Epidemiol. 20:432-457.CrossRefPubMedGoogle Scholar
  47. Kilpikari, R., Sillanp ä ä, M.J. 2003, Bayesian analysis of multilocus association in quantitative and qualitative traits. Genet. Epidemiol. 25:122-135.CrossRefPubMedGoogle Scholar
  48. Lander, E.S., Botstein, D. 1989, Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199.PubMedGoogle Scholar
  49. Lee, S.H., Van der Werf, J.H.J. 2005, The role of pedigree information in combined linkage disequi- librium and linkage mapping of quantitative trait loci in a general complex pedigree. Genetics 169:455-466.CrossRefPubMedGoogle Scholar
  50. Liu, J.S., Sabatti, C., Teng, J., Keats, B.J.B., Risch, N. 2001, Bayesian analysis of haplotypes for linkage disequilibrium mapping. Genome Res. 11:1716-1724.CrossRefPubMedGoogle Scholar
  51. Long, A.D., Langley, C.H. 1999: The power of association studies to detect the contribution of can- didate genetic loci to variation in complex traits. Genome Res. 9:720-731.PubMedGoogle Scholar
  52. Lund, M.S., Sorensen, P., Guldbrandtsen, P., Sorensen, D.A. 2003, Multitrait fine mapping of quan- titative trait loci using combined linkage disequilibria and linkage analysis. Genetics 163:405-410.PubMedGoogle Scholar
  53. Luo, Z.W. 1998, Detecting linkage disequilibrium between a polymorphic marker locus and a trait locus in natural populations. Heredity 80:198-208.CrossRefPubMedGoogle Scholar
  54. Meuwissen, T.H.E., Goddard, M.E. 2000, Fine mapping of quantitative trait loci using linkage dise- quilibria with closely linked marker loci. Genetics 155:421-430.PubMedGoogle Scholar
  55. Meuwissen, T.H.E., Goddard, M.E. 2001, Prediction of identity-by-descent probabilities from marker haplotypes. Genet. Sel. Evol. 33:605-634.CrossRefPubMedGoogle Scholar
  56. Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E. 2001, Prediction of total genetic value using genome- wide dense marker maps. Genetics 157:1819-1829.PubMedGoogle Scholar
  57. Meuwissen, T.H.E., Karlsen, A., Lien, S., Oldsaker, I., Goddard, M. 2002, Fine mapping of a quanti- tative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373-379.PubMedGoogle Scholar
  58. Meuwissen, T.H.E., Goddard, M.E. 2004, Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genet. Sel. Evol. 36:261-279.CrossRefPubMedGoogle Scholar
  59. Molitor, J., Majoram, P., Thomas, D. 2003, Fine scale mapping of disease genes with multiple muta- tions via spatial clustering techniques. Am. J. Hum. Genet. 73:1368-1384.CrossRefPubMedGoogle Scholar
  60. Natarajan, R., Kass, R.E. 2000, Reference Bayesian methods for generalized linear mixed models. J. Am. Stat. Assoc. 95:227-237.CrossRefGoogle Scholar
  61. Neale, D.B., Savolainen, O. 2004, Association genetics of complex traits in conifers. Trends Plant Sci. 9:325-330.CrossRefPubMedGoogle Scholar
  62. Nielsen, D.M., Weir, B.S. 2001, Association studies under general disease models. Theor. Popul. Biol. 60:253-263.CrossRefPubMedGoogle Scholar
  63. Nielsen, D.M., Zaykin, D. 2001, Association mapping: where we’ve been, where we’re going. Expert Rev. Mol. Diagn. 1(3):89-97.CrossRefGoogle Scholar
  64. Nordborg, M. 2001, Coalescent theory. pp 179-212. In: Handbook of Statistical Genetics. D. J. Baldinget al., (Eds.), Wiley, New York.Google Scholar
  65. Nordborg, M., Tavar é, S. 2002, Linkage disequilibrium: what history has to tell us. Trends Genet. 18:83-90.CrossRefPubMedGoogle Scholar
  66. Oppenheimer, S. 2003, The Real Eve: Modern Man’s Journey Out of Africa. ISBN 0-786-71192-2 (Hardcover).Google Scholar
  67. Perez-Enciso, M. 2003, Fine mapping of complex trait genes combining pedigree and linkage disequilibrium information: a Bayesian unified framework. Genetics 163:1497-1510.PubMedGoogle Scholar
  68. Plummer, M., Best, N., Cowles, K., Vines, K. 2005, Coda Version 0.9-5: Output analysis and diagnostics for MCMC.
  69. Pong-Wong, R., George, A.W., Woolliams, J.A., Haley, C.S. 2001, A simple and rapid method for calculating identity-by-descent matrices using multiple markers. Genet. Sel. Evol. 33:453-471.CrossRefPubMedGoogle Scholar
  70. Pot, D., McMillan, L., Echt, C., Le Provost, G., Garnier-G ér é, P., Cato, S., Plomion, C. 2005, Nucleotide variation in genes involved in wood formation in two pine species. New Phytol. 167:101-112.CrossRefPubMedGoogle Scholar
  71. Pritchard, J.K., Stephens, M., Donnelly, P. 2000a, Inference of population structure using multilocus genotype data. Genetics 155:945-959.Google Scholar
  72. Pritchard, J.K., Stephens, M., Rosenberg, N.A., Donnelly, P. 2000b, Association mapping in structured populations. Am. J. Hum. Genet. 67:170-181.CrossRefGoogle Scholar
  73. Pritchard, J.K., Rosenberg, N.A. 1999, Use of unlinked markers to detect population stratification in association studies. Am. J. Hum. Genet. 65:220-228.CrossRefPubMedGoogle Scholar
  74. Raftery, A.E., Lewis, S.M. 1992, One long run with diagnostics: implementation strategies for Markov chain Monte Carlo. Stat. Sci. 7:493-497.CrossRefGoogle Scholar
  75. Raftery, A.E., Lewis, S.M. 1995, The number of iterations, convergence diagnostics and generic Metropolis algorithms. In: Practical Markov Chain Monte Carlo. W.R. Gilks, D.J. Spiegelhalter, and S. Richardson, (Eds.), Chapman, Hall, London.Google Scholar
  76. Raftery, A.E. 1996, Hypothesis testing and model selection. Chapter 10, pp. 163-188. In: Markov chain Monte Carlo in practice. W.R. Gilks, S. Richardson, and D.J. Spiegelhalter (Eds.).Google Scholar
  77. Raftery, A.E., Madigan, D., Hoeting, J.A. 1997, Bayesian model averaging for linear regression models. J. Am. Stat. Assoc. 92:179-191.CrossRefGoogle Scholar
  78. Roberts, G.O. 1996, Markov chain concepts related to sampling algorithms. pp 45-58. In: Markov Chain Monte Carlo in Practice. W.R. Gilks, S. Richardson, D.J. Spiegelhalter (Eds.), Chapman, Hall, London.Google Scholar
  79. Schwarz, G. 1978, Estimating the dimension of a model. Ann. Stat. 6:461-464.CrossRefGoogle Scholar
  80. Sillanp ä ä, M.J., Bhattacharjee, M. 2005, Bayesian association-based fine mapping in small chromosomal segments. Genetics 169:427-439.CrossRefGoogle Scholar
  81. Sillanp ä ä, M.J., Corander, J. 2002, Model choice in gene mapping: what and why. Trends Genet. 18:301-307.CrossRefGoogle Scholar
  82. Spiegelhalter, D., Smith, A.F.M. 1982, Bayes factors for linear and log-linear models with vague prior information. J.R. Stat. Soc. B 44:377-387.Google Scholar
  83. Spiegelhalter, D., Thomas, A., Best, N., Gilks, W. 1995, BUGS - Bayesian inference using Gibbs sampling Version 0.50. MRC Biostatistics Unit, Cambridge.
  84. Spielman, R.S., McGinnis, R.E., Ewens, W.J. 1993, Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52:506-516.PubMedGoogle Scholar
  85. Stephens, M. 2001, Inference under the coalescent. pp 213-238 In: Handbook of Statistical Genetics. D.J. Baldinget al., (Eds.), Wiley, New York.Google Scholar
  86. Stephens, M., Smith, M.J., Donnelly, P.A. 2001, A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 66:978-989.CrossRefGoogle Scholar
  87. Stephens, M., Donnelly, P. 2003, Ancestral inference in population genetics models with selection (with discussion). Aust. NZ J. Stat. 45:395-430.CrossRefGoogle Scholar
  88. Stringer, C., McKie, R. 1996, African Exodus. Owl Books, London.Google Scholar
  89. Sykes, B. 2001, The Seven Daughters of Eve: The Science That Reveals Our Genetic Ancestry. W.W. Norton, New York.Google Scholar
  90. Terwilliger, J.D., Weiss, K.M. 1998, Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr. Opin. Biotechnol. 9:578-594.CrossRefPubMedGoogle Scholar
  91. Thornsberry, J.M., Goodman, M.M., Doebley, J., Kresovich, S., Nielsen, al., 2001, Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28:286-289.CrossRefPubMedGoogle Scholar
  92. Thumma, B.R., Nolan, M.F., Evans, R., Moran, G.F. 2005, Polymorphisms in Cinnamoyl CoA Reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 10.1534/genetics.105.042028.Google Scholar
  93. Tierney, L. 1994, Markov chains for exploring posterior distributions. In: Proceedings to the 1991 Interface Symposium, also available as Technical report #560 (revised), School of Statistics, University of Minnesota.Google Scholar
  94. Wells, S. 2003, The Journey of Man: A Genetic Odyssey. Princeton University Press, Princeton.Google Scholar
  95. Wilson, S. 2003, Discussion of: “Ancestral inference in population genetics models with selection” by M. Stephens and P. Donnelly. Aust. NZ J. Stat. 45:423-426.Google Scholar
  96. Wright, S. 1931, Evolution in Mendelian populations. Genetics 16:97-159.PubMedGoogle Scholar
  97. Wu, R., Zeng, Z.-B. 2001, Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 157:899-909.PubMedGoogle Scholar
  98. Wu, R., Ma, C.X., Casella, G. 2002, Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 160:779-792.PubMedGoogle Scholar
  99. Z öllner, S., Pritchard, J.K. 2005, Coalescent-based association mapping and fine mapping of complex trait loci. Genetics 169:1071-1092.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Roderick D. Ball
    • 1
  1. 1.Ensis Wood Quality, Scion (New Zealand Forest Research Institute Limited)RotoruaNew Zealand

Personalised recommendations