Gene-Assisted Selection Applications of Association Genetics for Forest Tree Breeding

  • Phillip L. Wilcox
  • Craig E. Echt
  • Rowland D. Burdon


Quantitative Trait Locus Association Genetic Forest Tree Quantitative Trait Locus Mapping Genetic Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10.11 References

  1. Allison, D.B., 1997, Transmission-disequilibrium tests for quantitative traits. Genetics 60:676-690.Google Scholar
  2. Ball, R.D., 2001, Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian Information Criterion. Genetics 159:1351-1364.PubMedGoogle Scholar
  3. Ball, R.D., 2005, Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies. Genetics 170:859-873.CrossRefPubMedGoogle Scholar
  4. Beavis, W.D., 1994, The power and deceit of QTL experiments: lessons from comparative QTL studies. pp. 250-266. In: Proceedings of the 49th Annual Corn and Sorghum Industry Research Conference. American Seed Trade Association, Washington, DC.Google Scholar
  5. Bonga, J.M., von Aderkas, P., 1993, Rejuvenation of tissues from mature conifersand its implications for propagation in vitro. In: Clonal Forestry (Eds. M.R. Ahuja, W.J. Libby) pp. 182-199. Springer-Verlag, Berlin Heidelberg.Google Scholar
  6. Bradshaw, H.D., Stettler, R.F., 1995, Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963-973.Google Scholar
  7. Brown, G.R., Bassoni, D.L., Gill, G.P., Fontana, J.R., Wheeler, N.C., Megraw, R.A., Davis, M.F., Sewell, M.M., Tuskan, G.A., Neale, D.B., 2003, Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.) III. QTL Verification and candidate gene mapping. Genetics 164:1537-1546.PubMedGoogle Scholar
  8. Brown, G.R., Gill, G.P., Kuntz, R.J., Beal, J.A., Nelson, C.D., Wheeler, N.C., Penttila, B., Roers, J., Neale, D.B., 2004a, Associations of candidate gene single nucleotide polymorphism with wood property phenotypes in loblolly pine (Abstr.). Plant and Animal Genome XII, 10-14 January 2006, San Diego, CA.Google Scholar
  9. Brown, G.R., Gill, G.P., Kuntz, R.J., Langley, C.H., Neale, D.B., 2004b, Nucleotide diversity and linkage disequilibrium in loblolly pine. Proceedings of the National Academy of Sciences of the United States of America 101:15255-15260.CrossRefGoogle Scholar
  10. Bucci, G., Menozzi, P., 1995, Genetic variation of RAPD markers in a Picea abies Karst. population. Heredity 75:188-197.CrossRefGoogle Scholar
  11. Burdon, R.D., 1982, The Roles and Optimal Place of Vegetative Propagation in Tree Breeding Strategies. In: Proceedings of IUFRO Meeting on Genetics and Breeding Strategies pp. 66-83. Sensenstein, Germany.Google Scholar
  12. Burdon, R.D., 1988, Recruitment for breeding populations: objectives, genetics, and implementation. In: Proceedings of Second International Conference on Quantitative Genetics (Eds. B.S. Weir, E.J. Eisen, M.M. Goodman, G. Namkoong) pp. 555 - 572. Sinauer, Sunderland, MA.Google Scholar
  13. Burdon, R.D., 1992, Genetic survey of Pinus radiata. 9: general discussion and implications for genetic management. New Zealand Journal of Forest Science 22:174-198.Google Scholar
  14. Burdon, R.D., 2001, Genetic diversity and disease resistance: some considerations for research, breeding and deployment. Canadian Journal of Forest Research 32:596-606.CrossRefGoogle Scholar
  15. Burdon, R.D., Namkoong, G., 1983, Multiple populations and sublines. Silvae Genetica 32:221-222.Google Scholar
  16. Burdon, R.D., Russell, J.H., 1999, Inbreeding depression in selfing experiments: statistical issues. Forest Genetics 5:179-189.Google Scholar
  17. Burdon, R.D., Firth, A., Low, C.B., Miller, M.A., 1998, Multi-site provenance trials of Pinus radiata in New Zealand. Forest Genetic Resources No 26. pp. 3-8. FAO, Rome.Google Scholar
  18. Bus, V.G., Gardiner, S.E., Bassett, H.C.M., Ranarunga, C., Rikkerink, E.H.A., 2000, Marker assisted selection for pest and disease resistance in the New Zealand apple breeding programme. Acta Horticulture 538:541-547.Google Scholar
  19. Casasoli, M., Derory, J., Morera-Dutrey, C., Brendel, O., Porth, I., Guehl, J.M., Villani, F., Kremer, A., 2006, Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics 172:533-546.CrossRefPubMedGoogle Scholar
  20. Cato, S.A., Pot, D., Kumar, S., Douglas, J., Gardner, R.C., Wilcox, P.L., 2006, Balancing selection in a dehydrin gene associated with increased wood density and decreased radial growth in Pinus radiata (Abstr.). Plant and Animal Genome XIV, 14-18 January 2006, San Diego, CA.Google Scholar
  21. Chagné, D., Brown, G., Lalanne, C., Madur, D., Pot, D., Neale, D., Plomion, C., 2003, Comparative genome and QTL mapping between maritime and loblolly pines. Molecular Breeding 12:185-195.CrossRefGoogle Scholar
  22. Deng, H.-W., 2001, Population admixture may appear to mask, change or reverse genetic effects of genes underlying complex traits. Genetics 159:1319-1323.PubMedGoogle Scholar
  23. Devey, M.E., Delfino-Mix, A., Kinloch, B.B., Neale, D.B., 1995, Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine. Proceedings of the National Academy of Sciences of the United States of America 92:2066-2070.CrossRefPubMedGoogle Scholar
  24. Devey, M.E., Sewell, M.M., Uren, T.L., Neale, D.B., 1999, Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theoretical and Applied Genetics 99:656-662.CrossRefGoogle Scholar
  25. Devey, M.E., Groom, K.A., Nolan, M.F., Bell, J.C., Dudzinski, M.J., Old, K.M., Matheson, A.C., Moran, G.F., 2004, Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiata. Theoretical and Applied Genetics 108:1056-1063.CrossRefPubMedGoogle Scholar
  26. Dodds, K.G., Montgomery, G.W., Tate, M.L., 1993, Testing for linkage between a marker locus and a major gene locus in half-sib families. Journal of Heredity 84:43-48.Google Scholar
  27. Dupuis, J., Siegmund, D., 1999, Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151:373-386.PubMedGoogle Scholar
  28. Dvornyk, V., Sirviö, A., Mikkonen, M., Savolainen, O., 2002, Low nucleotide diversity at the pal1 locus in the widely distributed Pinus sylvestris. Molecular Biology and Evolution 19:179-188.PubMedGoogle Scholar
  29. Echt, C.S., Vendramin, C.D., Nelson, C.D., Marquardt, P., 1999, Microsatellite DNA as shared genetic markers among conifer species. Canadian Journal of Forest Research 29:365-371.CrossRefGoogle Scholar
  30. Epperson, B.K., Allard, R.W., 1987, Linkage disequilibrium between allozymes in natural populations of lodgepole pine. Genetics 115:341-352.PubMedGoogle Scholar
  31. Evans, R., 1994, Rapid measurement of transverse measurements of tracheids in radial wood specimens of Pinus radiata. Holzforschung 48:168-172.CrossRefGoogle Scholar
  32. Evans, R., Kibblewhite, R.P., Stringer, S., 1999, Variation of microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita Journal 50:487-494.Google Scholar
  33. Geburek, T., 1998, Genetic variation of Norway spruce (Picea abies [L.] Karst.) populations in Austria 1. Digenic disequilibrium and microspatial patterns derived from allozymes. Forest Genetics 5:221-230.Google Scholar
  34. Germer, S., Holland, M.J., Higuchi, R., 2000, High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Research 10:258-266.CrossRefPubMedGoogle Scholar
  35. Gupta, P.K., Rustgi, S., Kulwal, P.L., 2005, Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology 57:461-485.CrossRefPubMedGoogle Scholar
  36. Howe, G.T., Aitken, S.N., Neale, D.B., Jermstad, K.D., Wheeler, N.C., Chen, T.H.H., 2003, From genotype to phenotype: unravelling the complexities of cold adaptation in forest trees. Canadian Journal of Forest Research 33:1247-1266.Google Scholar
  37. Huntley, S.K., Ellis, D., Gilbert, M., Chapple, C., Mansfield, S.D., 2003, Significant increases in pulping efficiency in C4H-F5H transformed poplars: improved chemical savings and reduced environmental toxins. Journal of Agricultural Food Chemicals 51:6178-6183.CrossRefGoogle Scholar
  38. Ingvarsson, P.K., 2005, Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169:945-953.CrossRefPubMedGoogle Scholar
  39. Jayawickrama, K.J.S., Carson, M.J., 2000, A breeding strategy for the New Zealand Radiata Pine Breeding Co-operative. Silvae Genetica 49:82-90.Google Scholar
  40. Johnson, G.R., Burdon, R.D., 1990, Family-site interaction in Pinus radiata: implications for progeny testing strategy and regionalised breeding in New Zealand. Silvae Genetica 39:55-62.Google Scholar
  41. Johnson, G.R., Wheeler, N.C., Strauss, S.H., 2000, Financial feasibility of marker-aided selection in Douglas-fir. Canadian Journal of Forest Research 30:1942-1952.CrossRefGoogle Scholar
  42. Jones, L., Ennos, A.R., Turner, S.R., 2001, Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. The Plant Journal 26:205-216.CrossRefPubMedGoogle Scholar
  43. Kerr, R.J., Goddard, M.E., 1997, Comparison between the use of MAS and clonal tests in tree breeding programmes. In: IUFRO ’97 Genetics of Radiata Pine (Eds. R.D. Burdon, J.M. Moore) pp. 297-303. Proceedings of NZFRI/IUFRO Conference 1-4 December and Workshop 5 December, Rotorua, New Zealand FRI Bulletin No. 203.Google Scholar
  44. Kinloch, B.B., Parks, G.K., Flower, C.W., 1970, White pine blister rust: simply inherited resistance in sugar pine. Science 167:193-195.CrossRefPubMedGoogle Scholar
  45. Kirst, M.E., Myburg, A.A., Sederoff, R.R., 2003, Genetical genomics of Eucalytptus: combining expression profiling and genetic segregation analysis (Abstr.). Plant and Animal Genome XI, 11-15 January 2003, San Diego, CA.Google Scholar
  46. Kirst, M., Myers, R.M., De León, J.P.G., Kirst, M.E., Scott, J., Sederoff, R., 2004, Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiology 135:2368-2378.CrossRefPubMedGoogle Scholar
  47. Krutovsky, K.V., Neale, D.B., 2005, Nucleotide diversity and linkage disequilibrium in cold hardiness and wood quality related candidate genes in Douglas-fir. Genetics 171:2029-2041.CrossRefPubMedGoogle Scholar
  48. Kuang, H., Richardson, T.E., Carson, S.D., Bongarten, B., 1999, Genetic analysis of inbreeding depression in plus tree 850.55 of Pinus radiata D. Don. II. Genetics of viability genes. Theoretical and Applied Genetics 99:140-146.Google Scholar
  49. Kumar, S., Echt, C.S., Wilcox, P.L., Richardson, T.E., 2004, Testing for linkage disequilibrium in the New Zealand radiata pine breeding population. Theoretical and Applied Genetics 108:292-298.CrossRefPubMedGoogle Scholar
  50. Lagercrantz, U., Ryman, N., 1990, Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44:38-53.CrossRefGoogle Scholar
  51. Long, A.D., Langley, C.H., 1999, The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Research 9:720-731.PubMedGoogle Scholar
  52. Luo, Z.W., 1998, Detecting linkage disequilibrium between a polymorphic marker locus and a trait locus in natural populations. Heredity 80:198-208.CrossRefPubMedGoogle Scholar
  53. Lynch, M., Walsh, B., 1997, Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA.Google Scholar
  54. Michelmore, R.W., Paran, I., Kesseli, R.V., 1991, Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America 88:9828-9832.CrossRefPubMedGoogle Scholar
  55. Mitton, J.B., 1992, The dynamic mating system of conifers. New Forests 6:187-216.CrossRefGoogle Scholar
  56. Mitton, J.B., Sturgeon, K.B., Davis, M.L., 1980, Genetic differentiation in ponderosa pine along a steep elevational transect. Silvae Genetica 29:100-103.Google Scholar
  57. Morgante, M., Salamini, F., 2003, From plant genomics to breeding practice. Current Opinion in Biotechnology 14:214-219.CrossRefPubMedGoogle Scholar
  58. Muona, O., Szmidt, A.E., 1985, A multilocus study of natural populations of Pinus sylvestris. In: Lecture notes in Bioinformatics. (Ed H.-R. Gregorious) pp. 226-240. Springer Verlag, Berlin.Google Scholar
  59. Murray, B.G., 1998, Nuclear DNA amounts in gymnosperms. Annals of Botany 82(Supplement A):3-15.CrossRefGoogle Scholar
  60. Paran, I., Zamir, D., 2003, Quantitative traits in plants: beyond the QTL. Trends in Genetics 19:303-306.CrossRefPubMedGoogle Scholar
  61. Paux, E., Tamasloukht, M.B., Ladouce, N., Sivadon, P., Grima-Pettenati, J., 2004, Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Molecular Biology 55:263-280.CrossRefPubMedGoogle Scholar
  62. Plomion, C., Richardson, T.E., MacKay, J., 2005, Advances in forest tree genomics: forest trees workshop, plant and animal genome XIII conference, San Diego, CA, January 2005. New Phytologist 166:713-717.Google Scholar
  63. Pot, D., McMillan, L.K., Echt, C.S., Le Provost, G., Garnier-Gere, P., Cato, S.A., Plomion, C., 2005, Nucleotide variation in genes involved in wood formation in two pine species. New Phytologist 167:101-112.CrossRefPubMedGoogle Scholar
  64. Powers, H.R., Hubbard, S.D., Anderson, R.L., 1982, Resistance to diseases and pests in forest trees. In: Proceedings of Third International Workshop on Genetics of Host-Parasite Interactions in Forestry (Eds. H.M. Heybroek, B.R. Stephan, K. von Weissenberg). pp. 427- 434. Pudoc, Wageningen, The Netherlands.Google Scholar
  65. Pritchard, J.K., Rosenberg, N.A., 1999, Use of unlinked genetic markers to detect population stratification in association studies. American Journal of Human Genetics 65:220-228.CrossRefPubMedGoogle Scholar
  66. Pritchard, J.K., Stephens, M., Rosenberg, N.A., Donnelly, P., 2000, Association mapping in structured populations. Genetics 67:170-181.Google Scholar
  67. Rafalski, J.A., Morgante, M., 2004, Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends in Genetics 20:103-111.CrossRefPubMedGoogle Scholar
  68. Roberds, J.H., Brotschol, J.V., 1985, Linkage disequilibrium among allozyme loci in natural populations of Liriodendron tulipifera L. Silvae Genetica 34:137-141.Google Scholar
  69. Russell, J.H., Burdon, R.D., Yanchuk, A.D., 2003, Inbreeding depression and variance structures for height and adaptation in self- and outcross Thuja plicata families in varying environments. Forest Genetics 10:171-184.Google Scholar
  70. Salvi, S., Tuberosa, R., 2005, To clone or not to clone plant QTLs: present and future challenges. Trends in Plant Sciences 10:1360-1385.Google Scholar
  71. Salvi, S., Sponza, G., Morgante, M., Tomes, D., Tuberosa, R., 2006, Confirmation of the maize flowering time QTL Vgt1 by association mapping (Abstr.). Plant and Animal Genome XIV, 14-18 January 2006, San Diego, CA.Google Scholar
  72. Sewell, M.M., Neale, D.B., 2000, Mapping quantitative traits in forest trees. In: Molecular biology of woody plants, forestry Sciences (Eds. S.M. Jain, S.C. Minocha) pp. 407-433. Kluwer Academic Publishers, The Netherlands.Google Scholar
  73. Strauss, S.H., Lande, R., Namkoong, G., 1992, Limitations of molecular marker-aided selection in forest tree breeding. Canadian Journal of Forest Research 22:1050-1061.CrossRefGoogle Scholar
  74. Stromberg, L.D., Dudley, J.D., Rufener, G.K., 1994, Comparing conventional early generation selection with molecular marker assisted selection in maize. Crop Science 34:1221-1225.CrossRefGoogle Scholar
  75. Telfer, E.J., Echt, C.S., Nelson, C.D., Wilcox, P.L., 2006, Comparative mapping in Pinus radiata and P. taeda reveals co-location of wood density-related QTL (Abstr.). Plant and Animal Genome XIV, 14-18 January 2006, San Diego, CA.Google Scholar
  76. Thornsberry, J.M., Goodman, M.M., Doebley, J., Kresovich, S., Nielsen, D., Buckler, E.S., 2001, Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics 28:286-289.CrossRefPubMedGoogle Scholar
  77. Thumma, B.R., Nolan, M.F., Evans, R., Moran, G.F., 2005, Polymorphisms in Cinnamoyl CoA Reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257-1265.CrossRefPubMedGoogle Scholar
  78. Wayne, M.L., McIntyre, L.M., 2002, Combining mapping and arraying: an approach to candidate gene identification. Proceedings of the National Academy of Sciences of the United States of America 99:14903-14906.CrossRefPubMedGoogle Scholar
  79. Wilcox, P.L., Amerson, H.V., Kuhlman, E.G., Liu, B.-H., O'Malley, D.M., Sederoff, R.R., 1996, Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proceedings of the National Academy of Sciences of the United States of America 93:3859-3864.CrossRefPubMedGoogle Scholar
  80. Wilcox, P.L., Richardson, T.E., Carson, S.D., 1997, Nature of quantitative trait variation in Pinus radiata: insights from QTL detection experiments. In: IUFRO ’97 Genetics of Radiata Pine (Eds. R.D. Burdon, J.M. Moore) pp. 304-312. Proceedings of NZFRI/IUFRO Conference 1-4 December and Workshop 5 December, Rotorua, New Zealand FRI Bulletin No. 203.Google Scholar
  81. Wilcox, P.L., Carson, S.D., Richardson, T.E., Ball, R.D., Horgan, G.P., Carter, P., 2001, Benefit-cost analysis of DNA marker-based selection in progenies of Pinus radiata seed orchard parents. Canadian Journal of Forest Research 31:2213-2224.CrossRefGoogle Scholar
  82. Williams, C.G., Savolainen, O., 1996, Inbreeding depression in conifers: implications for breeding strategy. Forest Science 42:102-117.Google Scholar
  83. Wright, S.I., Gaut, B.S., 2005, Molecular population genetics and the search for adaptive evolution in plants. Molecular Biology and Evolution 22:506-519.CrossRefPubMedGoogle Scholar
  84. Wu, R., Zeng, Z.-B., 2001, Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 157:899-909.PubMedGoogle Scholar
  85. Wu, R., Ma, C.-X., Casella, G., 2002, Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations. Genetics 160:779-792.PubMedGoogle Scholar
  86. Yin, T.M., DiFrazio, S.P., Gunter, L.E., Jawdy, S.S., Boerjan, W., Tuskan, G.A., 2004, Genetic and physical mapping of Melampsora rust resistance genes in Populus and characterization of linkage disequilibrium and flanking genomic sequence. New Phytologist 164:95-105.CrossRefGoogle Scholar
  87. Yu, J., Pressoir, G., Briggs, W.H., Bi, I.V., Yamasaki, M., Doebley, J.F., McMullen, M.D., Gaut, B.S., Nielsen, D.M., Kresovich, S., Buckler, E.S., 2006, A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38:203-208.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Phillip L. Wilcox
    • 1
  • Craig E. Echt
    • 2
  • Rowland D. Burdon
    • 3
  1. 1.Cell wall Biotechnology Centre, Scion (New Zealand Forest Research Institute Limited)RotoruaNew Zealand
  2. 2.USDA Forest ServiceSouthern Institute of Forest Genetics 23332SaucierUSA
  3. 3.Cell wall Biotechnology Centre, Scion (New Zealand Forest Research Institute Limited)RotoruaNew Zealand

Personalised recommendations