Skip to main content

The Evolutionary Advantage of Being Conservative: The Role of Hysteresis

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See Chapters 11, 16, and 18.

    Google Scholar 

  2. See Chapter 17.

    Google Scholar 

  3. P.P Delsanto and M. Scalerandi, Modeling nonclassical nonlinearity, conditioning, and slow dynamics effects in mesoscopic elastic materials, Phys. Rev. B 68, 641071-641079 (2003).

    Article  Google Scholar 

  4. G.P. Pescarmona, The life context: cells, nutrients and signals, in: Recent Research Development in Biophysical Chemistry, edited by C.A. Condat and A. Baruzzi (Research Signpost, Kerela, India, 2002), pp. 69-90.

    Google Scholar 

  5. T.M. Devlin, Biochemistry (Wiley-Liss, New York, 1997).

    Google Scholar 

  6. N. Sperelakis, Cell physiology Source Book (Academic Press, 1998) pp. 171.

    Google Scholar 

  7. O. Scharff, B. Foder and U. Skibsted, Biochim Biophys Acta. 730, 295-305 (1983).

    Article  Google Scholar 

  8. P. Bennekou, T.L. Barksmann, L.R. Jensen, B.I. Kristensen and P. Christophersen, Voltage activation and hysteresis of the non-selective voltage-dependent channel in the intact human red cell, Bioelectrochemistry 62, 181-5 (2004).

    Article  Google Scholar 

  9. W. van Eden, R. van der Zee and B. Prakken, Heat-shock proteins induce T-cell regulation of chronic inflammation, Nat Rev Immunol. 5, 318-30 (2005).

    Article  Google Scholar 

  10. J.M. Berg, J.L. Tymoczko and L. Stryer, Biochemistry (New York, W. H. Freeman and Co.; 2002). Chapter 10.2

    Google Scholar 

  11. H. Mizukami, A.G. Beaudoin, D.E. Bartnicki DE and B. Adams, Hysteresis-like behavior of oxygen association-dissociation equilibrium curves of sickle cells determined by a new new method, Proc Soc Exp Biol Med. 154, 304-9 (1977).

    Google Scholar 

  12. I. Groulx and S. Lee, Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein, Mol Cell Biol. 22, 5319-36 (2002).

    Article  Google Scholar 

  13. M. Scalerandi, G.P. Pescarmona, P.P. Delsanto and B. Capogrosso Sansone, Local interaction simulation approach for the response of the vascular system to metabolic changes of cell behavior, Phys Rev E 63, 11901-11910 (2001).

    Article  ADS  Google Scholar 

  14. M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig and D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells, Science 284, 143-147 (1999).

    Article  ADS  Google Scholar 

  15. J.M. Levsky and R.H. Singer, Gene expression and the myth of the average cell, Trends Cell Boil. 13,4-6 (2003).

    Article  Google Scholar 

  16. J.R. Pomerening, E.D. Sontag and J.E. Jr. Ferrell, Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2, Nat Cell Boil. 5, 346-351 (2003).

    Article  Google Scholar 

  17. N. Sperelakis, Cell Physiology Source Book (Academic Press, 1998) chapters 26, 28.

    Google Scholar 

  18. G.P. Pescarmona, data not published.

    Google Scholar 

  19. C.P. Bagowski and J.E.Ferrell , Bistability in the JNK cascade, Current Biology 11, 1176-1182 (2001).

    Article  Google Scholar 

  20. J. Monod and F. Jacob, General conclusions: teleonomic mechanisms in cellular Metabolism, growth, and differentiation, Cold Spring Symp Quant Biol, 26, 389-401 (1961).

    Google Scholar 

  21. Ferrell JE Jr and E.M. Machleder, The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes, Science 280, 895-898 (1998).

    Article  ADS  Google Scholar 

  22. M.J. Solomon, M. Glotzer, T.H. Lee, M. Philipee and M.W. Kirschner, Cyclin activation of p34cdc2, Cell 63, 1013-1024 (1990).

    Article  Google Scholar 

  23. I. Hoffmann, P.R. Clarke, M.J. Marcote, E. Karsenti and G. Draetta, Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis, EMBO J 12, 53-63 (1993).

    Google Scholar 

  24. C. Frieden, Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept, J Biol Chem. 245, 5788-99 (1970).

    Google Scholar 

  25. K.L. Nelson-Rossow, K.A. Sukalski and R.C. Nordlie, Hysteresis at near-physiologic substrate concentrations underlies apparent sigmoid kinetics of the glucose-6-phosphatase system, Biochim Biophys Acta. 1163, 297-302 (1993).

    Article  Google Scholar 

  26. G.B. Van den Berg, H. Vaandrager-Verduin, T.J. Van Berkel and J.F. Koster, Hysteretic behaviour of rat liver fructose 1,6-biophosphatase induced by zinc ions, Arch Boichen Biophys. 219, 277-85 (1982).

    Article  Google Scholar 

  27. J.R. Appleman, W.A. Beard, T.J. Delcamp, N.J. Prendergast, J.H. Freisheim and R.L. Blakley, A typical transient state kinetics of recombinant human dihydrofolate reductase produced by hysteretic behavior. Comparsion with dihydrofolate reductases from other sources, J Biol. Chem. 264, 2625-33 (1989).

    Google Scholar 

  28. A.C. Lloyd, C.A. Carrpenter and E.D. Saggerson, Intertissue differences in the hysteretic behavior of camitine palmitoyltransferase in the presence of malonyl-CoA, Biochem J. 237, 289-91 (1986).

    Google Scholar 

  29. J. Barrett, Thermal hysteresis proteins, Int J Biochem Cell Biol. 33, 105-17 (2001).

    Article  Google Scholar 

  30. E. Pueyo, P. Smetana, P. Laguna and M. Malik, estimation of the QT/RR hysteresis lag, J Electro-cardiol. 36 Suppl, 187-90 (2003)

    Google Scholar 

  31. S.M. Ebenholtz, Estimation of the QT/RR hysteresis lag, Vision Res. 32, 925-9 (1992).

    Article  Google Scholar 

  32. K.K. Brewer, H. Sakai, A.M. Alencar, A. Majumdar, S.P. Hold, K.R. Lutchen, E.P. Ingentino and B. Suki, Lung and alveolar wall elastic and hysteretic behavior in rats: effects of in vivo elastase treatment, J Appl Physiol 95, 1926-36 (2003).

    Google Scholar 

  33. M.S. Goldman, J.H. Levine, G. Major, D.W. Tank and H.S. Seung, Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron, Cereb Cortex. 13, 1185-95 (2003).

    Article  Google Scholar 

  34. M. Pini, H.W. Wiskott, S.S. Scherrer, J. Botsis and U.C. Belser, Mechanical characterization of bovine periodontal ligament, J Periodontal Res. 37, 237-44 (2002).

    Article  Google Scholar 

  35. T. Roenneberg and M. Merrow, The network of time: understanding the molecular circadian system, Curr Biol. 13, R198-207 (2003).

    Article  Google Scholar 

  36. T. Matsuo, S. Yamaguchi, S. Mitsui, A. Emi, F. Shimodz and H. Okamura, Control Mechasnism of the Circadian Clock for Timing of Cell Division in vivo, Science, 302, 225-259 (2003).

    Article  ADS  Google Scholar 

  37. See Chapter 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Pescarmona, G.P. (2006). The Evolutionary Advantage of Being Conservative: The Role of Hysteresis. In: Delsanto, P.P. (eds) Universality of Nonclassical Nonlinearity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-35851-2_7

Download citation

Publish with us

Policies and ethics