Skip to main content

Nonlinearity and Complexity in Elastic Wave Motion

  • Chapter
Book cover Universality of Nonclassical Nonlinearity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Capriz, G. (1989), Continua with Microstructure, Springer Tracts Nat. Phil., v. 34, Springer, Berlin, New York.

    Google Scholar 

  • Chen, P.J. (1973), Growth and decay of waves in solids, in Flugge’s Handbuch der Physic, vol. Via/3, Springer, Berlin.

    Google Scholar 

  • Cosserat E. and F. (1909), Th éorie des corpes d éformables, Hermann, Paris.

    Google Scholar 

  • Coulson, C.A. and Jeffrey, A. (1977), Waves, Longman Math. Texts, Essex, UK.

    Google Scholar 

  • Engelbrecht, J. (1983), Nonlinear Wave Processes of Deformation in Solids, Pitman, London.

    MATH  Google Scholar 

  • Engelbrecht, J. (1993) , Qualitative Aspects of Nonlinear Wave Motion: Complexity and Simplicity, Appl. Mech. Rev., 46, no 12, part 1, 509-518.

    Article  Google Scholar 

  • Engelbrecht, J. (1993) , Complexity and simplicity, Proc. Estonian Acad. Sci. Phys. Math, 421, 107-118.

    MathSciNet  Google Scholar 

  • Engelbrecht, J. (1997), Nonlinear Wave Dynamics, Complexity and Simplicity, Kluwer, Dordrecht, The Netherlands.

    MATH  Google Scholar 

  • Engelbrecht, J. and Braun, M., (1998), Nonlinear waves in nonlocal media, Appl. Mech. Rev., 51, No. 8, 475-488.

    Article  Google Scholar 

  • Engelbrecht, J. and Pastrone, F. (2003), Waves in microstructured solids with nonlinearities in microscale, Proc. Estonian Acad. Sci. Phys. Math, 52/1, 12-20.

    MATH  MathSciNet  Google Scholar 

  • Engelbrecht, J., Berezovski, A., Pastrone, F. and Braun, M. (2004), Waves in microstructured materials and dispersion, Phil. Mag, 85, Nos 33-35, 4127-4141.

    Article  ADS  Google Scholar 

  • Engelbrecht, J., Cermelli, P. and Pastrone, F. (1999), Wave hierarchy in microstructured solids, in Geome-try, Continua and Microstructure (G. Maugin ed.) Hermann, Paris.

    Google Scholar 

  • Ericksen, J.L. (1972), Wave propagation in thin elastic shells, Arch Rat. Mech. Anal., 43, 167-178.

    MathSciNet  Google Scholar 

  • Eringen, A.C. (1966), Linear theory of micropolar elasticity, J. Math. Mech., 15, 909-923.

    MATH  MathSciNet  Google Scholar 

  • Eringen, A.C. (2000), Microcontinuum Field Theories. I - Foundations, Springer, Berlin, New York.

    Google Scholar 

  • Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, Berlin, New York.

    MATH  Google Scholar 

  • Forest, S. and Sievert, R. (2003), Elastoviscoplastic constitutive framework for generalized continua, Acta Mech., 160, 71-111.

    Article  MATH  Google Scholar 

  • Hayes, M.A., (1963), Wave propagation and uniqueness in prestressed elastic solids. Proc. Roy. Soc. Lond., A274, 500-506.

    MathSciNet  ADS  Google Scholar 

  • Hayes, M.A. and Rivlin, R.S. (1972), Propagation of sinusoidal small-amplitude waves in a deformed viscoelastic solid - II, J. Acoust. Soc. Amer., 51, 1652-1663.

    Article  MATH  ADS  Google Scholar 

  • Jeffrey, A. (1976), Quasilinear Hyperbolic Systems and Waves, Pitman, London.

    MATH  Google Scholar 

  • Jeffrey, A. (1980), Lectures on nonlinear wave propagation, in Wave Propagation (Corso CIME, Bres-sanone), Liguori, Bologna, 7-97.

    Google Scholar 

  • Kunin, I.A. (1983), Elastic Media with Microstructure, 2 Vol., Springer, Berlin.

    MATH  Google Scholar 

  • Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity (4th ed.), Dover, New York.

    MATH  Google Scholar 

  • Marsden, J.E. and Hugues, T. (1983), Mathematical Foundations of Elasticity, Prentice Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Maugin, G.A. (1980), Acta Mech., 35, pp.1-70.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Maugin, G.A. (1993), Material Inhomogeneities in Elasticity, Chapman & Hall, London.

    MATH  Google Scholar 

  • Maugin, G.A. (1999), Nonlinear Waves in Elastic Crystals, Oxford Univ. Press, Oxford, UK.

    MATH  Google Scholar 

  • Maugin, G.A. (2004a), Introduction a la mecanique des milieux continus generalises et ses applications, Proc. Colloque National MECAMAT 2004 (Aussois, Janvier 2004), eds. P. Babin, R. Dendievel, S. Forest, J.F. Ganghoffer, A. Zeghadi, and M.H. Zoberman, pp. 47-54, Association M écamat, Paris [also on CD-Rom].

    Google Scholar 

  • Maugin, G.A. (2004b), Generalized continuum mechanics: Three paths, ICTAM’04, Warsaw (15-21 Aug.2004), Proc. CD-Rom ISBN83-89697-01-1, Eds. W. Gutkowski and T.A. Kowaleski, FSM3L 11347, 2 pages.

    Google Scholar 

  • Mindlin, R.D. (1964). Microstructure in linear elasticity, Arch. Rat. Mech. Anal., 1, 51-78.

    MathSciNet  Google Scholar 

  • Pastrone, F. (2003), Waves in solids with vectorial microstructure, Proc. Estonian Acad. Sci. Phys. Math, 52/1, 21-29.

    MATH  MathSciNet  Google Scholar 

  • Pastrone, F. (2005), Wave propagation in microstructured solids, Math. Mech. Solids, 10, 349-357.

    Article  MATH  MathSciNet  Google Scholar 

  • Pastrone, F., Cermelli, P. and Porubov, A.V. (2004), Nonlinear waves in 1-D solids with microstructure, Mater. Phys. Mech., 9-16.

    Google Scholar 

  • Porubov, A.V. (2003), Amplification of Nonlinear Strain Waves in Solids, World Scientific, Singapore.

    Book  MATH  Google Scholar 

  • Porubov, A.V., Pastrone, F. (2004), Nonlinear bell-shaped and kink-shaped strain waves in microstructured solids, Intl. J. Nonlinear Mech., 39, 1289-1299.

    Article  MATH  ADS  Google Scholar 

  • Taniuti, T. and Nishihara, K. (1983), Nonlinear Waves, Pitman, London (in Japanese, 1977).

    MATH  Google Scholar 

  • Thomas, T.J. (1961), Plastic Flow and Fracture in Solids, Academic, New York.

    MATH  Google Scholar 

  • Toupin, A. (1962), Elastic materials with coupled-stresses, Arch. Rat. Mech. Anal., 11, 385-414.

    Article  MATH  MathSciNet  Google Scholar 

  • Toupin, A. (1964), Theories of elasticity with coupled-stress, Arch. Rat. Mech. Anal., 17, 85-112.

    Article  MATH  MathSciNet  Google Scholar 

  • Truesdell, C.A. and Noll, W. (1965), The nonlinear field theories of mechanics, in Flugge’s Handbuch der Physik, vol. III/3, Springer, Berlin, 1-602.

    Google Scholar 

  • Truesdell, C.A. and Toupin, R. (1960), The classical field theories, in Flugge’s Handbuch der Physik, vol. III/1, Springer, Berlin, 226-793.

    Google Scholar 

  • Truesdell, C.A. and Wang, C.C. (1973), Introduction to Rational Elasticity, Noordhoff, Leyden.

    MATH  Google Scholar 

  • Witham, G.B. (1974), Linear and Nonlinear Waves, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Pastrone, F. (2006). Nonlinearity and Complexity in Elastic Wave Motion. In: Delsanto, P.P. (eds) Universality of Nonclassical Nonlinearity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-35851-2_2

Download citation

Publish with us

Policies and ethics