Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Analysis of the speckle structure of a random field is a well-known topic. With the development of near-field microscopy, the subject has been revisited in the last ten years. This paper addresses the structure of a random field in close proximity to an interface. First, we give a general overview of the differences between the structure of the field in the near field and in the far field. We emphasize the role of the evanescent waves in the near field. The second part of the paper reviews recent studies on field correlations in the near field for two cases: random thermal fields and light multiply scattered. The third part of the paper is devoted to the analysis of the speckle pattern above an interface in the single scattering regime. It is shown that in that case, the speckle pattern is nonuniversal and strongly related to the statistical properties of the surface. It is known that near-field images strongly depend on the specific properties of each tip. It cannot be assumed in general that the signal delivered by a near-field scanning microscope delivers a signal proportional to the square of the local electric field. In the last part of the paper, we derive from the reciprocity theorem a general form of the signal. In particular, we emphasize the role of polarization and the influence of the tip on the spectral response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Dainty, Laser speckle and related phenomena, C. Dainty ed. (Springer Verlag, Heidelberg, 1984).

    Google Scholar 

  2. J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237(1997).

    Article  ADS  Google Scholar 

  3. J.W. Goodman, Statistical Optics (Wiley, New York, 1985).

    Google Scholar 

  4. R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources”, Phys. Rev. Lett. 82, 1660 (1999).

    Article  ADS  Google Scholar 

  5. S.M. Rytov, Y.A. Kravtsov, and V.I. Tatarskii, Principles of Statistical Radiophysics, vol. 3 (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  6. E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, vol. 9 (Pergamon Press, Oxford, 1980).

    Google Scholar 

  7. C. Henkel, K. Joulain, R. Carminati, and J.-J. Greffet, “Spatial coherence of thermal near fiels,” Opt. Commun. 186, 57 (2000).

    Article  ADS  Google Scholar 

  8. T. Setälä, M. Kaivola, and A.T. Friberg, “Degree of polarization in near fields of thermal sources: Effects of surface waves”, Phys. Rev. Lett. 88, 123902 (2002).

    Article  ADS  Google Scholar 

  9. R. Carminati and J. J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function,” Opt. Commun. 116, 316–321 (1995).

    Article  ADS  Google Scholar 

  10. N.F. van Hulst, F.B. Segerink, F. Achten, and B. Bölger, “Evanescent-field optical microscopy: effects of polarization, tip shape and radiative waves,” Ultramicroscopy 42, 416–421(1992).

    Article  Google Scholar 

  11. T.L. Ferrell, S.L. Sharp, and R.J. Warmack, “Progress in photon scanning tunneling microscopy (PSTM),” Ultramicroscopy 42, 408–415 (1992).

    Article  Google Scholar 

  12. F. de Fornel, P.M. Adam, L. Salomon, and J.P. Goudonnet, “Effect of coherence of the source on the images obtained with a photon scanning tunneling microscope”, Opt. Lett. 19, 1082–1084(1994)

    Article  ADS  Google Scholar 

  13. F. de Fornel, L. Salomon, J.C. Weeber, A. Rahmani, C. Pic, and A. Dazi, “Effects of the coherence in near-field microscopy,” in Optics at the nanometer scale, M. Nieto-Vesperinas and N. García eds. (Kluwer Academic Publishers, Dordrecht, 1996).

    Google Scholar 

  14. D.P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V.M. Shalaev, J.S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters”, Phys. Rev. Lett. 72, 4149 (1994).

    Article  ADS  Google Scholar 

  15. P. Zhang, T.L. Haslett, C. Douketis, and M. Moskovits, “Mode localization in selfaffine fractal interfaces observed by near-field microscopy,” Phys. Rev. B 57, 15513 (1998).

    Article  ADS  Google Scholar 

  16. S. Grésillon, L. Aigouy, A.C. Boccara, J.C. Rivoal, X. Quelin, C. Desmaret, P. Gadenne, V.A. Shubin, A.K. Sarychev, and V.M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520 (1999).

    Article  ADS  Google Scholar 

  17. V.M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272, 61 (1996).

    Article  ADS  Google Scholar 

  18. E.Y. Poliakov, V.A. Markel, V.M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57, 14901 (1998).

    Article  ADS  Google Scholar 

  19. K. Seal, A.K. Sarychev, H. Noh, D.A. Genov, A. Yamilov, V.M. Shalaev, Z.C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94, 226101 (2005).

    Article  ADS  Google Scholar 

  20. S.I. Bozhevolnyi, I.I. Smolyaninov, and A.V. Zayats, “Near-field microscopy of surfaceplasmon polaritons: Localization and internal interface imaging,” Phys. Rev. B 51,17916 (1995).

    Article  Google Scholar 

  21. S.I. Bozhevolnyi, B. Vohnsen, I.I. Smolyaninov, and A.V. Zayats, “Direct observation of surface polariton localization caused by surface roughness,” Opt. Commun. 117, 417 (1995).

    Article  ADS  Google Scholar 

  22. S.I. Bozhevolnyi, V.S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89, 186801 (2002).

    Article  ADS  Google Scholar 

  23. J.A. Sánchez-Gil, V. Garcia-Ramos, and E.R. Méndez, “Near-field electromagnetic wave scattering from random self-affine fractal metal surfaces: spectral dependence of local field enhancements and their statistics in connection with surface-enhanced Raman scattering,” Phys. Rev. B 62, 10515 (2000).

    Article  Google Scholar 

  24. J.A. Sánchez-Gil, V. Garcia-Ramos, and E.R. Méndez, “Light scattering from self-affine fractal silver surfaces with nanoscale cutoff: far-field and near-field calculations,” J. Opt. Soc. Am. A 19, 902 (2002).

    Article  ADS  Google Scholar 

  25. T.A. Leskova, A.A. Maradudin, and J. Muñoz-Lopez, “Coherence of light scattered from a randomly rough surface,” Phys. Rev. E 71, 036606 (2005).

    Article  ADS  Google Scholar 

  26. A.A. Chabanov and A.Z. Genack, “Field distributions in the crossover from ballistic to diffusive wave propagation,” Phys. Rev. E 56, R1338 (1997).

    Article  ADS  Google Scholar 

  27. P. Sebbah, B. Hu, A.Z. Genack, R. Pnini, and B. Shapiro, “Spatial-field correlation: The building block of mesoscopic fluctuations,” Phys. Rev. Lett. 88, 123901 (2002).

    Article  ADS  Google Scholar 

  28. V. Emiliani, F. Intonti, D. Wiersma, M. Colocci, M. Cazayous, A. Lagendijk, and F. Aliev, “Near-field measurement of short-range correlation in optical waves transmitted through random media,” J. Micros. 209, 173 (2003).

    Article  MathSciNet  Google Scholar 

  29. B. Shapiro, “Large intensity fluctuations for wave propagation in random media,” Phys. Rev. Lett. 57, 2168 (1986).

    Article  ADS  Google Scholar 

  30. A. Apostol and A. Dogariu, “Spatial correlations in the near field of random media,” Phys. Rev. Lett. 91, 093901 (2003).

    Article  ADS  Google Scholar 

  31. A. Apostol and A. Dogariu, “First-and second-order statistics of optical near fields,” Opt. Lett. 29, 235 (2004).

    Article  ADS  Google Scholar 

  32. A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E 72, 025602 (2005).

    Article  ADS  Google Scholar 

  33. J.C. Weeber, F. de Fornel, and J.P. Goudonnet, “Numerical study of the tip-sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285 (1996).

    Article  ADS  Google Scholar 

  34. J.J. Greffet and R. Carminati,“Theory of imaging in near-field microscopy,” in Optics at the Nanometer Scale, M. Nieto-Vesperinas and N. García, eds. (Kluwer Academic Press, Dordrecht, 1996).

    Google Scholar 

  35. J.J. Greffet and R. Carminati, “Relationship between the near-field speckle pattern and the statistical properties of a surface,” Ultramicroscopy 61, 43–50 (1995).

    Article  Google Scholar 

  36. C. Liu and S.-H. Park, “Anisotropy of near-field speckle patterns,” Opt. Lett. 30, 1602–1604(2005).

    Article  ADS  Google Scholar 

  37. C. Cheng, C. Liu, X. Ren, M. Liu, S. Teng, and Z. Xu, “Near-field speckles produced by random self-affine surfaces and their contrast transitions,” Opt. Lett. 28, 1531–1533 (2003).

    Article  ADS  Google Scholar 

  38. J.J. Greffet, “Scattering of electromagnetic waves by rough dielectric surfaces,” Phys. Rev. B 37, 6436(1988).

    Article  ADS  Google Scholar 

  39. A.A. Maradudin, T. Michel, A.R. McGurn, and E.R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (New York) 203, 255 (1990).

    Article  ADS  Google Scholar 

  40. J.J. Greffet, A. Sentenac, and R. Carminati, “Surface profile reconstruction using nearfield data,” Opt. Commun. 116, 20–24 (1995).

    Article  ADS  Google Scholar 

  41. D.W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651 (1984).

    Article  ADS  Google Scholar 

  42. E. Betzig et al., “Near-field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49, 269 (1986).

    Article  ADS  Google Scholar 

  43. R.C. Reddick, R.J. Warmack, and T.L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767 (1989); F. de Fornel, J.P. Goudonnet, L. Salomon, and E. Lesniewska, “An evanescent field optical microscope,” Proc. SPIE 1, 77 (1989); D. Courjon, K. Sarayeddine, and M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23 (1989).

    Article  ADS  Google Scholar 

  44. D.W. Pohl and D. Courjon (eds.), Near-Field Optics (Kluwer, Dordrecht, 1993); O. Marti and R. Mller (eds.), Photons and Local Probes, (Kluwer, Dordrecht, 1995); N. García and M. Nieto-Vesperinas (eds.) Optics at the Nanometer Scale, (Kluwer, Dordrecht, 1996); M. Ohtsu (eds.) Near-Field Nano/Atom Optics and Technology, (Springer-Verlag, Tokyo, 1998).

    Google Scholar 

  45. O. Marti, O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225 (1993); B. Hecht, H. Bielefeldt, L. Novotny, Y Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889 (1996); J.R. Krenn et al., “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590 (1999).

    Article  ADS  Google Scholar 

  46. S.I. Bozhevolnyi and F.A. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett. 78, 2823 (1997); A.K. Sarychev and V.M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335, 275(2000).

    Article  ADS  Google Scholar 

  47. E. Betzig and J.K. Trautman, “Near-field optics: Microscopy, spectroscopy and surface modification beyond the difraction limit,” Science 257, 189 (1992).

    Article  ADS  Google Scholar 

  48. E. Betzig and R. Chichester, “Single molecules observed by scanning near-field optical microscopy,” Science 262, 1422 (1993).

    Article  ADS  Google Scholar 

  49. R.X. Bian, R.C. Dunn, X.S. Xie, and P.T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772 (1995).

    Article  ADS  Google Scholar 

  50. T. Guenther, V. Malyarchuk, J.W. Tomm, R. Müller, C. Lienau, and J. Luft, “Near-field photocurrent imaging of the optical mode profiles of semiconductor laser diodes,” Appl. Phys. Lett. 78, 1463 (2001).

    Article  ADS  Google Scholar 

  51. S.I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177 (1996).

    Article  ADS  Google Scholar 

  52. C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657 (1996).

    Article  ADS  Google Scholar 

  53. R.W.P. King, Electromagnetic Engineering, vol. 1 (McGraw Hill, New York, 1945), p. 311; D. S. Jones, The Theory of Electromagnetism (Pergamon, Oxford, 1964), pp. 59–65.

    Google Scholar 

  54. P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42, 9210 (1990).

    Article  ADS  Google Scholar 

  55. J.A. Porto, R. Carminati, and J.-J. Greffet, “Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy,” J. Appl. Phys. 88, 4845 (2000).

    Article  ADS  Google Scholar 

  56. J.N. Walford, J.A. Porto, R. Carminati, and J.-J. Greffet, “Theory of near-field magnetooptical imaging,” J. Opt. Soc. Am. A 19, 572 (2002).

    Article  ADS  Google Scholar 

  57. L. Landau, E. Lifchitz, and L. Pitaevskii, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984).

    Google Scholar 

  58. Ph. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Part I, sect. 7.5.

    MATH  Google Scholar 

  59. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics, (Wiley, New York, 1991).

    Google Scholar 

  60. R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, “Reciprocity of evanescent electromagnetic waves,” J. Opt. Soc. Am. A 15, 706–712 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  61. K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Defintion and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).

    Article  ADS  Google Scholar 

  62. R. Carminati and J.J. Sáenz, “Scattering theory of Bardeen’s formalism for tunneling: New approach to near-field microscopy,” Phys. Rev. Lett. 84, 5156 (2000).

    Article  ADS  Google Scholar 

  63. L. Novotny, D.W. Pohl, and P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768 (1994).

    Article  ADS  Google Scholar 

  64. H.A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944); C.J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 35 (1954).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  65. D. Van Labeke, F. Baida, D. Barchiesi, and D. Courjon, “A theoretical model for the inverse scanning tunneling optical microscope (ISTOM),” Opt. Commun. 114, 470 (1995).

    Article  ADS  Google Scholar 

  66. F. Zenhausern, M.P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623 (1994); Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159 (1994); P. Gleyzes, A.C. Boccara, and R. Bachelot, “Near field optical microscopy using a metallic vibrating tip,” Ultramicroscopy 57, 318 (1995).

    Article  ADS  Google Scholar 

  67. H. Cory, A.C. Boccara, J.C. Rivoal, and A. Lahrech, “Electric field intensity variation in the vicinity of a perfectly conducting conical probe: application to near-field microscopy,” Microwave Opt. Technol. Lett. 18, 120 (1998).

    Article  Google Scholar 

  68. J.J. Bowman, T.B.A. Senior, and P.L.E. Uslenghi (eds.), Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland, Amsterdam, 1969).

    Google Scholar 

  69. J. Van Bladel, Singular Electromagnetic Fields and Sources (Clarendon Press, Oxford, 1991).

    Google Scholar 

  70. L. Aigouy, A. Lahrech, S. Grésillon, H. Cory, A.C. Boccara, and J.C. Rivoal, “Polarization effects in apertureless scanning near-field optical microscopy: an experimental study,” Opt. Lett. 24, 187 (1999).

    Article  ADS  Google Scholar 

  71. L. Aigouy, F.X. Andréani, A.C. Boccara, J.C. Rivoal, J.A. Porto, R. Carminati, J.-J. Greffet, and R. Mégy, “Near-field optical spectroscopy using an incoherent light source,” Appl. Phys. Lett. 76, 397 (2000).

    Article  ADS  Google Scholar 

  72. W. Denk and D.W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510 (1991).

    Article  Google Scholar 

  73. F. Zenhausern, Y. Martin, and H.K. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 angstroms resolution,” Science 269, 1083 (1995); C.J. Hill, P.M. Bridger, G.S. Picus, and T.C. McGill, “Scanning apertureless microscopy below the diffraction limit: comparisons between theory and experiment,” Appl. Phys. Lett. 75, 4022 (1999); R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanoscale,” Nature 418, 159 (2002).

    Article  ADS  Google Scholar 

  74. H.A. Lorentz, Collected Papers, vol. III (Nijhoff, Den Haag, The Netherlands, 1936).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Greffet, JJ., Carminati, R. (2007). Speckle Pattern in the Near Field. In: Maradudin, A.A. (eds) Light Scattering and Nanoscale Surface Roughness. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35659-4_15

Download citation

Publish with us

Policies and ethics