A Model Checking Method for Partially Symmetric Systems

  • Serge Haddad
  • Jean-Michel Ilié
  • Khalil Ajami
Chapter
Part of the IFIP — The International Federation for Information Processing book series (IFIPAICT, volume 55)

Abstract

A new method of model checking is proposed based on the existence of symmetries in system. We show how to fully handle the partial symmetries of both properties and systems. Our method does not depend on a particular formalism and a priori can be applied to any one. Well-formed Petri Nets are used as an illustration.

Keywords

Verification and validation Temporal logic model-checking symmetries partial symmetries Büchi automata well-formed Petri nets. 

References

  1. [1]
    K. Ajami, S. Haddad, and J.-M. Ilié. Exploiting Symmetry in Linear Temporal Model Checking: One Step Beyond. In Proc. of Tools and Algorithms for the Construction and Analysis of Systems TACAS’98, part of Theory and practice of Software ETAPS’98, volume 1384 of LNCS, pages 52–67, Lisbon - Portugal, April 1998. Springer Verlag.Google Scholar
  2. [2]
    G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed Coloured Nets and Their Symbolic Reachability Graph. In K. Jensen and G. Rozenberg, editors, High-Level Petri Nets. Theory and Application, pages 373–396. Springer Verlag, 1991.Google Scholar
  3. [3]
    G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic Well-Formed Colored Nets and Symmetric Modeling Applications. IEEE Transactions on Computers, 42 (11): 1343–1360, 1993.CrossRefGoogle Scholar
  4. [4]
    G. Chiola, G. Franceshinis, R. Gaeta, and M. Ribaudo. GreatSPN1.7: GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets. Performance Evaluation, North Holland Journal, 24, 1997.Google Scholar
  5. [5]
    E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting Symmetry in Temporal Logic Model Chacking. Formal Methods and System Design, 9: 77–104, 1996.CrossRefGoogle Scholar
  6. [6]
    E. A. Emerson and R. J. Trefler. From Asymmetry to Full Symmetry: New Techniques For Symmetry Reduction in Model Checking. In Proc of CHARME’99, Lecture Notes in Computer Science, pages 142–156, Bad Herrenalb - Germany, September 1999. Springer Verlag.Google Scholar
  7. [7]
    E.A. Emerson and A. Prasad Sistla. Symmetry and Model Checking. Formal Methods and System Design, 9: 307–309, 1996.Google Scholar
  8. [8]
    R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple On-the-fly Automatic Verification of Linear Temporal Logic. In Proc. Int Conf. on Protocol Specification Testing and Verification, 1993.Google Scholar
  9. [9]
    P. Godefroid and P. Wolper. A Partial Approach to Model Checking. Information and Computation, 110 (2): 305–326, May 1994.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    S. Haddad, J.M. Ilié, M. Taghelit, and B. Zouari. Symbolic Reach-ability Graph and Partial Symmetries. In Proc. of the 16th Intern. Conference on Application and Theory of Petri Nets, volume 935 of LNCS, pages 238–257, Turin, Italy, June 1995. Springer Verlag.Google Scholar
  11. [11]
    G. J. Holzmann. The Spin Model Checker. IEEE Transaction on Software Engineering, 23 (5): 279–295, May 1997.CrossRefGoogle Scholar
  12. [12]
    K. Jensen. Coloured Petri Nets. In W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets: Central Model and their Properties, Advances in Petri Nets, Part 1, volume 254 of Lecture Notes in Computer Science, pages 248–299, Bad Honnef, Germany, September 1986. Springer Verlag.Google Scholar
  13. [13]
    D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27: 333–354, 1983.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    S. Lang. Algebra. 7th printing. Addison Wesley, 1977.Google Scholar
  15. [15]
    A. Pnueli. The temporal logic of programs In Proceedings of the 18th IEEE Symposium on Foundations of Computer Science, pages 46–57, 1977.Google Scholar
  16. [16]
    M. Vardi. An Automata-theoretic Approach to Linear Temporal Logic. Lecture Notes in Computer Science, 1043: 238–266, 1996.CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2000

Authors and Affiliations

  • Serge Haddad
    • 1
  • Jean-Michel Ilié
    • 2
  • Khalil Ajami
    • 2
  1. 1.lab. LamsadeUniversité Paris DauphineFrance
  2. 2.lab. LIP6Université Paris VIFrance

Personalised recommendations