Advertisement

New directions in modelling, analysis and design of WDM/OFDM-networks: (I) Optical Switching

  • Josef Giglmayr
Chapter
Part of the IFIP — The International Federation for Information Processing book series (IFIPAICT)

Abstract

Bearing in mind that a topological representation of a finite graph is a compact space, by the relationships between (Graph)Topology, Algebraic Topology, Group Theory, (Differential)Geometry and Combinatorics a new universe arises for modelling, analysis and design of (telecommunication) networks. Throughout the present paper, coverings/covering spaces, the lifting problem and quotient graphs are briefly interpreted in terms of the requirements for the combinatorial design of optical switches though the presentation is mainly based on illustrations rather than on a (precise) mathematical description.

Key words

Multi-layer parallel waveguides electrodes spatial all-optical switch planar all-optical switch all-optical expander/concentrator parallel permuters vertical stacking graph covering lifting 

References

  1. 1.
    A. Ajmone Marsan, A. Bianco, E. Leonardi and F. Neri, ‘De Bruijn topologies for self-routing all-optical networks,’ SPIE, vol. 2024, pp. 99–111, 1993.CrossRefGoogle Scholar
  2. 2.
    C. Berge, Graphs and Hypergraphs, North-Holland Publishing Company, 1973.Google Scholar
  3. 3.
    S. Jiang and T. E. Stern, ‘Regular multicast multihop lightwave networks,’ INFOCOM’95, paper 6a3, pp. 692–700, 1995.Google Scholar
  4. 4.
    W. S. Massey, Algebraic Topology: An Introduction, Springer, New York, 1977.Google Scholar
  5. 5.
    J. L. Gross and Th. W. Tucker, Topological Graph Theory, J. Wiley„ New York, 1987.Google Scholar
  6. 6.
    F. Harary, J. P. Hayes and H.-J. Wu, ‘A survey of the theory of hypercube graphs,’ Comput. Math. Appl., vol. 15, no. 4, pp. 277–289, 1988.MathSciNetzbMATHGoogle Scholar
  7. 7.
    D. A. Waller, ‘Double covers of graphs,’ Bull. Austral. Math. Soc., vol. 14, pp. 233–248, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    D. Angluin and A. Gardiner, ‘Finite common coverings of pairs of regular graphs,’ J. Combin. Theory, vol. B-30, pp. 184–187, 1981.Google Scholar
  9. 9.
    J. R. Munkres, Topology, a Ist course, Prentic Hall, Englewood Cliffs, 1975.zbMATHGoogle Scholar
  10. 10.
    W. Kautz, K. N. Levitt and A. Waksman, ‘Cellular interconnection arrays,’ IEEE Trans. Comput., vol. C-17, no. 5, pp. 162–170, May 1968.Google Scholar
  11. 11.
    HHI, Optical Switch Routing Subroutine Library, 1996.Google Scholar
  12. 12.
    D. Z. Djokovic, ‘Automorphism of graphs and coverings,’ J. Combin. Theory, vol. B-16, pp. 243–247, 1974.Google Scholar
  13. 13.
    N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1974.Google Scholar
  14. 14.
    R. M. Tanner, ‘Explicit concentrators from generalized N-gons,’ Siam J. Alg. Disc. Meth., vol. t, no. 3, pp. 287–293, September 1984.MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Farzan and D. A. Waller, ‘Antipodal embeddings of graphs,’ J. London Math. Soc., vol. 15–2, pp. 377–383, 1977.MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. A. Spanke and V. E. Benes, ‘N-stage planar optical permutation network,’ Appl. Opt., vol. 26, no. 7, pp. 1226–1229, 1987.CrossRefGoogle Scholar
  17. 17.
    J. Giglmayr, ‘Novel all-optical planar and compact minimum-stage switches of size 4x4,’ SPIE 2918, pp. 240–258, 1996.CrossRefGoogle Scholar
  18. 18.
    J. Giglmayr, ‘Principles of all-optical switching fabrics with minimum number of stages,’ Spring Topical Meeting Optics in Computing, Hyatt Lake Tahoe, Incline Village, Nevada, USA, 17–21 March, 1997.Google Scholar
  19. 19.
    JJ. Giglmayr, ‘Reduction of parallelism in optical 0(1)-switches,’ Conference on Information Sciences and Systems, Johns Hopkins University, Baltimore, 19–21 March, 1997.Google Scholar
  20. 20.
    T. Pisanski, J. Shawe-Taylor and J. Vrabec, ‘Edge-colorability of graph bundles,’ J. Combin. Theory, vol. B-35, pp. 12–19, 1983.Google Scholar
  21. 21.
    A. Graham, Kronecker Products and Matrix Calculus with Applications, E. Horwood, 1981.Google Scholar
  22. 22.
    J. Giglmayr, ‘Rearrangeability and connectivity of multistage interconnection networks with nearest-neighbour interconnections,’ IEICE Trans. Commun. (Japan), vol. E77-B, no. 12, pp. 1546–1555, December 1994.Google Scholar
  23. 23.
    A. Blass, F. Harary and Z. Miller, ‘Which trees are link graphs,’ J. Combin. Theory, vol. B-29, pp. 277–292, 1980.Google Scholar
  24. 24.
    J. Giglmayr, ‘Kautz topologies for all-optical self-routing networks,’ SPIE 2614, pp. 168–182, 1995.CrossRefGoogle Scholar
  25. 25.
    G. E. Carlson, J. E. Cruthirds, H. B. Sexton and C. G. Wright, ‘Interconnection networks based on a generalization of cube-connected cycles,’ IEEE Trans. Comput., vol. C-34, no. 8, pp. 769–772, August 1985.CrossRefGoogle Scholar
  26. 26.
    A. Y. Oruc, ‘Designing cellular permutation networks through coset decompositions of symmetric groups,’ J. Parallel and Distributed Computing, vol. 4, pp. 404–422, 1987.CrossRefGoogle Scholar
  27. 27.
    G. A. Margulis, ‘Explicit constructions of concentrators,’ Problemy Peredachi Informatsii, vol. 9, no. 4, pp. 71–80, 1973.MathSciNetzbMATHGoogle Scholar
  28. 28.
    O. Gabber and Z. Galil, ‘Explicit constructions of linear-sized superconcentrators,’ J. Computer and System Science, vol. 22, pp. 407–422, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    M. Hofmeister, ‘Counting double covers of graphs,’ J. Graph Theory, vol. 12, no. 3, pp. 437–444, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    S. Hong and J. H. Kwak, ‘Regular fourfold coverings with respect to the identity automorphism,’ J. Graph Theory, vol. 17, no. 5, pp. 621–627, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    VEGA, Graph Gallery,version 0.2, University of Ljubljana, 1995.Google Scholar
  32. 32.
    M. Farzan and D. A. Waller, ‘Kronecker products and local joins of graphs,’ Can. J. Math., vol. 24, no. 2, pp. 255–269, 1977.MathSciNetGoogle Scholar
  33. 33.
    N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, 1994.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Josef Giglmayr
    • 1
  1. 1.Heinrich-Hertz-Institut für Nachrichtentechnik Berlin GmbHBerlinGermany

Personalised recommendations