Skip to main content

Inulinases

  • Chapter
Enzyme Technology

Abstract

Inulin, a linear β (2-1) linked fructose polymer, serves as a storage polysaccharide in the underground organs of several plants of the Asteraceae, including Vernonia herbacea, Jerusalem artichoke (Helianthus tuberosus) and chicory (Cichorium endivia) (Vandamme & Derycke 1983). It is insoluble in water and due to variation in chain length; its molecular weight varies between ± 3500 – 5500. It is non-toxic and almost totally degraded by colonic bacteria, but undigested by gastric or intestinal enzymes. Recently, inulin received a great interest as it is a relatively inexpensive and abundant substrate for the production of fructose rich syrups (Pandey et al. 1999a), which has beneficial effects in diabetic patients, increases the iron absorption in children, has high sweetening capacity so it can be used in the diet of obese persons (Roberfroid & Delzenne 1998). It also stimulates calcium absorption in postmenopausal women (Heuvel et al. 2000), prevents colon cancer (Rowland et al. 1998), used as dietary fibers because of its fat like texture (Roberfroid & Delzenne 1998). It also serves as a potential feedstock for fuel ethanol (Ohta et al. 1993). Since chemical hydrolysis of inulin to fructose displays several drawbacks, like undesirable colouring of the inulin hydrolysate, change in taste and aroma etc, much attention is now being paid to the use of inulinase for enzyme hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allais JJ, Kammoun S, Blanc F, Girard C & Baratti JC, 1986, Isolation and characterization of bacterial strains with inulinase activity, Applied and Environmental Microbiology 52, 1086–1090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arand M, Golubev AM, Neto JRB, Polikarpov I, Wattiez R, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Shishliannikov SM, Chepurnaya OV & Neustroev KN, 2002, Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori, Biochemical Journal, 362, 131–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azhari R, Szlak AM, Ilan E, Sideman S & Lotan N, 1989, Purification and characterization of endo and exo inulinase, Biotechnology and Applied Biochemistry, 11, 105–107

    CAS  Google Scholar 

  • Baron M, Florencio JA, Zanin GM, Ferreira AG, Ennes R & Fontana J, 1996, Difructose anhydride forming bacterial inulinase II and fructogenic fungal inulinase-I, Applied Biochemistry and Biotechnology, 57-58, 605–615

    Google Scholar 

  • Barranco-Florido E, García-Garibay M, Gomez-Ruiz L & Azaola A, 2001, Immobilization system of Kluyveromyces marxianus cells in barium alginate for inulin hydrolysis, Process Biochemistry, 37, 513–519

    Google Scholar 

  • Barthomeuf C, Regerat F & Pourrat H, 1991, Production of inulinase by a new mold of Penicillium rugulosum, Journal of Fermentation Technology, 72, 491–494

    CAS  Google Scholar 

  • Bourgi J, Guirand JP & Galzy P, 1986, Isolation of a Kluyveromyces fragilis depressed mutant hyperproducer of inulinase for ethanol production from Jerusalem artichoke, Journal of Fermentation Technology, 64, 239–243

    CAS  Google Scholar 

  • Carniti P, Beltrame PL, Guardione D, Focher B & Marzetti AA, 1991, Hydrolysis of inulin: a kinetic study of the reaction catalysed by an inulinase from Aspergillus ficuum, Biotechnology and Bioengineering, 37, 575–579

    CAS  PubMed  Google Scholar 

  • Castro GR, Baigori MD & Sineriz F, 1995, A plate technique for screening of inulin degrading microorganisms, Journal of Microbiological Methods, 22, 51–56

    Google Scholar 

  • Choi WS, Choe YK, Kim SI & Byon SM, 1984, Production of inulinase using Jerusalem artichoke tuber extract, Journal of Korean Agricultural Chemical. Society, 27, 238–244

    Google Scholar 

  • Derycke DG & Vandamme EJ, 1984, Production and properties of Aspergillus niger inulinase (EC 3.2.1.7), Journal of Chemical Technology and Biotechnology B Biotechnol, 34, 45–51

    CAS  Google Scholar 

  • Drent W J, Laphor GA, Wiegant WM & Gottschal JC, 1991, Fermentation of inulin by Clostridium thermosuccinogenes sp. nov, a thermophilic anaerobic bacterium isolated from various habitats, Applied and Environmental Microbiology, 57, 455–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elyachioui M, Hornez JP & Tailliez R, 1992, General properties of extracellular inulinases, Journal of Applied Bacteriology, 73, 514–519

    CAS  Google Scholar 

  • Ettalibi M & Baratti JC, 2001, Sucrose hydrolysis by thermostable immobilized inulinases from Aspergillus ficuum, Enzymeand Microbial Technology, 28, 596–601

    CAS  Google Scholar 

  • Ettalibi M & Baratti JC, 1987, Purification, properties and comparison of invertase, exoinulinases and endoinulinases of Aspergillus ficuum, Applied Microbiology and Biotechnology, 26, 13–20

    CAS  Google Scholar 

  • Fontana JD, Baron M, Diniz ACP & Franco VC, 1994, Microbial inulinase secretion using chemically modified inulins, Applied Biochemistry and Biotechnology, 45/46, 257–268

    Google Scholar 

  • Gill PK, Sharma AD, Harchand RK & Singh P, 2003, Effect of media supplements and culture conditions on inulinase production by an actinomycete strain, Bioresource Technology, 87, 359–362

    CAS  PubMed  Google Scholar 

  • Gupta AK, Singh DP, Kaur N & Singh R, 1994a, Production, purification and immobilization of inulinase from Kluyveromyces fragilis, Journal of Chemical Technology and Biotechnology, 59, 377–385

    CAS  Google Scholar 

  • Gupta AK, Singh DP, Kaur N & Singh R, 1994b, High thermal stability of inulinases from Aspergillus species, Biotechnology Letters, 16, 733–734

    CAS  Google Scholar 

  • Gupta AK, Rathore P, Kaur N & Singh R, 1990, Production, thermal stability and immobilization of inulinase from Fusarium oxysporum, Journal of Chemical Technology and Biotechnology, 47, 245–257

    CAS  PubMed  Google Scholar 

  • Gupta AK, Kaur N & Singh R, 1989, Fructose and inulinase production from waste Cichorium intybus roots, Biological wastes, 29, 73–77

    CAS  Google Scholar 

  • Gupta AK, Nagpal B, Kaur N & Singh R, 1988, Mycelial and extracellular inulinases from Fusarium oxysporum grown on aqueous extract of Cichorium intybus roots, Journal of Chemical Technology and Biotechnology, 42, 69–76

    CAS  Google Scholar 

  • Heuvel EGHM, Schoterman MHC & Muijis T, 2000, Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women, Journal of Nutrition, 130, 2938–2942

    PubMed  Google Scholar 

  • Jing W, Zhengyu J, Bo J & Augustine A, 2003, Production and separation of exo- and endoinulinase from Aspergillus ficuum, Process Biochemistry, 39, 5–11

    Google Scholar 

  • Kim CH & Rhee SK, 1989, Fructose production from Jerusalem artichoke by inulinase immobilized on chitin, Biotechnology Letters, 11, 201–206

    CAS  Google Scholar 

  • Kim CH & Rhee SK, 1990, Ethanol production from Jerusalem artichoke by inulinase and Zymomonas mobilis, Applied Biochemistry and Biotechnology, 23, 171–180

    CAS  Google Scholar 

  • Kim DH, Choi YJ, Song SK & Yun JW, 1997, Production of inulooligosaccharides using endo-inulinase from a Pseudomonas sp, Biotechnology Letters, 19, 369–371

    CAS  Google Scholar 

  • Ku MA & Hang YD, 1994, Effect of inulin on yeast inulinase production in sauerkraut brine, World Journal of Microbiology and Biotechnology, 10, 354–355

    CAS  PubMed  Google Scholar 

  • Kulminskaya AA, Arand M, Eneyskaya EV, lvanen DR, Shabalin KA, Shishlyannikov SM, Saveliev AN, Komeeva OS & Neustroev KN, 2003, Biochemical characterization of Aspergillus awamori exoinulinase: substrate binding characteristics and regioselectivity of hydrolysis, Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 1650, 22–29

    CAS  Google Scholar 

  • Kumiko K, Toshihiro A & Tae K, 1999, Purification and properties of a thermostable inulinase (β-D-fructan fructohydrolase) from Bacillus stearothermophilus KP1289, Starch, 51, 253–258

    Google Scholar 

  • Kushi RT, Monti R & Contiero J, 2000, Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus, Journal oflndustrial Microbiology and Biotechnology, 25, 63–69

    CAS  Google Scholar 

  • Lam KS & Grootwassnik JWD, 1990, Enzymatic digestion of spent yeast cells for nutrient recycling in inulinase production, Journal oflndustrial Microbiology, 6, 207–210

    CAS  Google Scholar 

  • Looten P, Blanchet D & Vandecasteele JP, 1987, The beta-fructofuranosidase activities of a strain Clostridium acetobutylicum grown on inulin, Applied Microbiology and Biotechnology, 25, 419–425

    CAS  Google Scholar 

  • Miller GL, 1959, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Analytical Chemistry, 31, 426–428

    CAS  Google Scholar 

  • Mousa E & Jacques CB, 1987, Purification, properties and comparison of invertase, exoinulinases and endoinulinases of Aspergillus ficuum. Applied Microbiology and Biotechnology, 26, 13–20

    Google Scholar 

  • Nakamura T, Hoashi S & Nakatsu S, 1978a, Culture conditions for inulinase production by Aspergillus, Nippon Nogeikagaku Kaishi, 52, 105–110

    CAS  Google Scholar 

  • Nakamura T, Kurokawa T, Nakatsu S & Ueda S, 1978b, Crystallization and general properties of an extracellular inulinase from Aspergillus sp, Nippon Nogeikagaku Kaishi, 52, 159–166

    CAS  Google Scholar 

  • Nakamura T, Nagatoma Y, Hamada S, Nishino Y & Ohta K, 1994, Occurrence of two forms of extracellular endoinulinase from Aspergillus niger mutant 817, Journal of fermentation and Bioengineering, 78, 134–139

    CAS  Google Scholar 

  • Nakamura T, Ogata Y, Shitara A, Nakamura A & Ohta, K, 1995, Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817, Journal of fermentation and Bioengineering, 80, 164–169

    CAS  Google Scholar 

  • Nakamura T, Shitara A, Matsuda S, Matsuo T, Suiko M & Ohta T, 1997, Production, purification and properties of an endo inulinase of Penicillium sp TN-88 that liberates inulotriose, Journal offermentation and Bioengineering, 81, 564–566

    Google Scholar 

  • Ohta K, Hamada S & Nakamura T, 1993, Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae, Applied and Environmental Microbiology, 59, 729–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta K, Suetsugu N & Nakamura T, 2002, Purification and properties of an extracellular inulinase from Rhizopus sp. strain TN-96, Journal of Bioscience & Bioengineering, 94, 78–80

    CAS  Google Scholar 

  • Ongen-Baysal G & Sukan SS, 1996, Production of inulinase by mixed culture of Aspergillus niger and Kluyveromyces marxianus, Biotechnology Letters, 18, 1431–1434

    Google Scholar 

  • Onodera S & Shiomi N, 1992, Purification and subsite affinities of exo-inulinase from Penicillium trzebinskii, Bioscience Biotechnology and Biochemistry, 56, 1443–1447

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N & Fontana JD, 1999a, Recent developments in microbial inulinase (its production, properties, and industrial applications), Applied Biochemistry and Biotechnology, 81, 35–52

    CAS  PubMed  Google Scholar 

  • Pandey A, Joseph S, Ashakumary L, Selvakumar P & Soccol CR, 1999b, Inulinase synthesis from a mesophilic culture in submerged cultivation, Applied Biochemistry and Biotechnology, 82, 103–114

    CAS  Google Scholar 

  • Park SC & Baratti JC, 1992, Batch fermentation kinetics of sugar beet molasses by Zymomonas mobilis, Biotechnology and Bioengineering, 38, 304–313

    Google Scholar 

  • Passador GGC, Furlan SA, Meller JK & Jonas R, 1996, Application of a microtitre reader system to the screening of inulinase-producing yeasts, Applied Microbiology and Biotechnology, 45, 158–61

    Google Scholar 

  • Pessoa Jr A, Hartmann R, Vitolo M & Hustedt H, 1996, Recovery of extracellular inulinase by expanded bed adsorption, Journal of Biotechnology, 51, 89–95

    CAS  Google Scholar 

  • Poorna V & Kulkarni PR, 1995, A study of inulinase production in Aspergillus niger using factorial fractional design, Bioresource technology, 57, 315–320

    Google Scholar 

  • Roberfroid MB & Delzenne NM, 1998, Dietary fructans, Annual Reviewd of Nutrition 18, 117–143

    CAS  Google Scholar 

  • Roquette-Freres, 1989, Fructose syrup production from raw vegetable material containing inulin. PN, FR, 2618161, dt20/l/89

    Google Scholar 

  • Rouwenhorst RJ, Visser LE, Van der Baan AA, Scheffers WA & Van Dijken JP, 1988, Production, distribution and kinetic properties of inulinase in continuous culture of Kluyveromyces marxianus CBS 6556, Applied and Environmental Microbiology, 54, 1131–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland IR, Rumney CJ, Coutts JT & Lievense LC, 1998, Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats, Carcinogensis, 19, 281–285

    CAS  Google Scholar 

  • Selvakumar P & Pandey A, 1997, Isolation and characterization of an inulinase producing strain, In- International Conference On Frontiers in Biotechnology, Nov. 26-29, Trivandrum, India, p

    Google Scholar 

  • Selvakumar P & Pandey A, 1998a, Isolation and characterization of an inulinase producing strain, Journal of Scientific and Industrial Research, 57, 621–624

    CAS  Google Scholar 

  • Selvakumar P & Pandey A, 1998b, Biosynthesis of inulin hydrolyzing enzyme in soild cultures, In-International symposium of microbial Technology for sustainable development and productivity, Nov-14-16, Jabalpur, India, p 121

    Google Scholar 

  • Selvakumar P & Pandey A, 1999a, Comparative studies on inulinase synthesis by Staphylococcus sp. and Kluyveromyces marxianus in submerged culture, Bioresource Technology, 69, 123–127

    CAS  Google Scholar 

  • Selvakumar P & Pandey A, 1999b, Solid-state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus, Process Biochemistry, 34, 851–855

    CAS  Google Scholar 

  • Sharma AD, Nanda JS, Gill PK, Bhullar SS, Singh P & Vyas D, 2003, Enhancement in inulinase production by mutagenesis in Penicillium purpurogenum, Indian Journal of Biotechnology, 1, 270–274

    Google Scholar 

  • Skowronek M & Fiedurek J, 2003, Selection of biochemical mutants of Aspergillus niger resistant to some abiotic stresses with increased inulinase production, Journal of Applied Microbiology, 95, 686

    CAS  PubMed  Google Scholar 

  • Storey KB & Schafhauser SDY, 1994, Immobilisation of polysaccharide - degrading enzymes, Biotechnology and Genetic Engineering Reviews, 12, 409–465

    CAS  Google Scholar 

  • Tai-Boong U, Mi SC & Sun HL, 1999, Purification and characterization of Aspergillus ficuum endoinulinase, Bioscience, Biotechnology and Biochemistry, 63, 146–151

    Google Scholar 

  • Thonart P, Roblain D & Rikir R, 1988, Improvement of inulin hydrolysis yeast cell reactor by mutants selection, Applied Biochemistry and Biotechnology, 17, 193–202

    CAS  Google Scholar 

  • Toyohiko N, Akichika S & Shusaku M, 1997, Production, purification and properties of an endoinulinase of Penicillium sp. TN-88 that liberates inulotriose, Journal of fermentation and Bioengineering, 84, 4313–318

    Google Scholar 

  • Uzunova K, Vassileva A, Ivanova V, Spasova D & Tonkova A, 2002, Thermostable exo-inulinase production by semicontinuous cultivation of membrane-immobilized Bacillus sp. 11 cells, Process Biochemistry, 37, 863–868

    CAS  Google Scholar 

  • Vandamme EJ & Derycke DG, 1983, Microbial inulinases: fermentation process, properties, and applications, Advances in Applied Microbiology, 29, 139–176

    CAS  PubMed  Google Scholar 

  • Viswanathan P & Kulkarni PR, 1996, Inulinase producing fungi and actinomycetes from Dahlia rhizosphere, Indian Journal of Microbiology, 36, 117–118

    Google Scholar 

  • Viswanthan P & Kulkarni PR, 1995, Enhancement of inulinase production by Aspergillus niger van Teighem, Journal of Applied Bacteriology, 78, 384–386

    Google Scholar 

  • Vullo DL, Coto CE & Sineriz F, 1991, Characteristics of an inulinase produced by Bacillus subtilis 430A, a strain isolated from the rhizosphere of Vernonia herbacea, Applied and Environmental Microbiology, 57, 2392–2394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Zheng Z, Lin Y & Zhu X, 1998, Optimising the culture conditions for higher inulinase production by Kluyveromyces sp.Y-85 and scaling up fermentation, Journal of fermentation and Bioengineering, 86, 395–399

    CAS  Google Scholar 

  • Wenling W, Zhong X, Qian Z & Xinsheng Z, 1997, Purification and properties of Penicillium extracellular inulinase, Industrial Microbiology, 27, 8–12

    Google Scholar 

  • Xiao R, Tanida M & Takao S, 1989, Purification and some properties of endoinulinase from Chrysosporium pannorum, Journal of Fermentation Technology, 67, 244–248

    CAS  Google Scholar 

  • Yakota A, Hirayama S, Enomoto K, Miura Y, Takao S & Tomita F, 1991, Production of inulin fructotransferase (depolymerising) by Arthrobacter sp H65-7 and preparation of DFA III from inulin by the enzyme, Journal of fermentation and Bioengineering, 72, 258–261

    Google Scholar 

  • Yokota A, Yamauchi O & Tomita F, 1995, Production of inulotriose from inulin by inulin degrading enzyme from Streptomyces rochei E87, Letters in Applied Microbiology, 21, 330–333

    CAS  Google Scholar 

  • Yun JW, Kim DH, Kim BW & Song SK, 1997, Comparison of sugar compositions between inulo- and fructooligosaccharides produced by different enzyme forms, Biotechnology Letters, 19, 553–556.

    CAS  Google Scholar 

Download references

Authors

Editor information

Ashok Pandey Colin Webb Carlos Ricardo Soccol Christian Larroche

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc. and Asiatech Publishers, Inc.

About this chapter

Cite this chapter

Sandhya, C., Pandey, A. (2006). Inulinases. In: Pandey, A., Webb, C., Soccol, C.R., Larroche, C. (eds) Enzyme Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-35141-4_18

Download citation

Publish with us

Policies and ethics