Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 40))

  • 2152 Accesses

Abstract

The solutions of the Dirac equation for the free electron and for hydrogenic atoms with stationary nuclei are primary building blocks for calculations on more complex many-electron systems. Section 3.1 introduces many useful notions, including plane wave solutions, the bilinear covariant expressions representing physical quantities such as the electron charge-current density, along with energy and spin projection operators. Charge conjugation relates electron and positron solutions. The separation of angular and radial amplitudes of central field Dirac spinors is explained in detail, permitting solution of the radial equations for bound and continuum states. Applications include relativistic Coulomb scattering and relativistic quantum defect theory. We show how to construct partial wave Green’s functions for the free and for hydrogenic Dirac electrons and sum the partial wave expansion for the free electron. Finally, we discuss the nonrelativistic limit and approximate relativistic Hamiltonians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grant I P 1961 Proc Roy Soc (Lond) A 262 555; — 1965 Proc Phys Soc 86 523.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Drake G W F ed 2005 Springer Handbook of Atomic, Molecular and Optical Physics Second edn (New York: Springer-Verlag)

    Google Scholar 

  3. Staff of the Bateman Manuscript Project 1953 Higher Transcendental Functions Vol. 1 (New York: McGraw-Hill Book Company)

    Google Scholar 

  4. Hartree D R 1929 Proc Camb Phil Soc 25 225.

    Article  MATH  Google Scholar 

  5. Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover)

    Google Scholar 

  6. Gottfried K 1966 Quantum Mechanics (New York: W A Benjamin, Inc.)

    Google Scholar 

  7. Coddington E A and Levinson N 1955 Theory of Ordinary Differential Equations (New York: McGraw Hill)

    MATH  Google Scholar 

  8. Greiner W 1990 Relativistic Quantum Mechanics. Wave Equations (Berlin: Springer-Verlag)

    MATH  Google Scholar 

  9. Greiner W, Müller B and Rafelski J 1985 Quantum Electrodynamics of Strong Fields (Berlin: Springer-Verlag)

    Google Scholar 

  10. Darwin C G 1928 Proc Roy Soc (Lond) A 118 654.

    Article  ADS  Google Scholar 

  11. Gordon W 1928 Z f Phys 48 11.

    Article  ADS  Google Scholar 

  12. Mott N F 1929 Proc. Roy. Soc. A 124 425.

    Article  ADS  Google Scholar 

  13. Hylleraas E A 1955 Z. Phys. 140 626.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Johnson W R and Cheng K T 1979 J. Phys. B: Atom. molec. phys. 12 863.

    Article  ADS  Google Scholar 

  15. Dirac P A M 1958 The Principles of Quantum Mechanics 4th ed. (Oxford: Clarendon Press).

    MATH  Google Scholar 

  16. Burke V M and Grant I P 1967 Proc Phys Soc 90 297.

    Article  ADS  Google Scholar 

  17. Garstang R H and Mayers D F 1966 Proc. Camb. Phil. Soc. 62 777.

    Article  Google Scholar 

  18. Kobus J, Karwowski J and Jaskolski W 1987 J. Phys. A.: Math. Gen. phys 20 3347.

    Article  ADS  Google Scholar 

  19. Mott N F and Massey H S W (1949) The theory of atomic collisions (2nd edition) (Oxford: Clarendon Press)

    MATH  Google Scholar 

  20. Rutherford E 1911 Phil. Mag. 21 669.

    Google Scholar 

  21. Joachain C J (1983) Quantum collision theory (3rd edition) (Amsterdam: North-Holland Publishing Company)

    Google Scholar 

  22. Sherman N 1956 Phys. Rev. 103 1601.

    Article  MATH  ADS  Google Scholar 

  23. Kessler J 1985 Polarized Electrons (2nd edition) (Berlin: Springer-Verlag)

    Google Scholar 

  24. Bethe H A and Salpeter E E 1957 Quantum Mechanics of One-and Two-Electron Atoms (Berlin-Göttingen-Heidelberg: Springer-Verlag)

    MATH  Google Scholar 

  25. Walker D W 1971 Adv. Phys. 20 257.

    Article  ADS  Google Scholar 

  26. Gordon W 1928 Z f Phys 50 630.

    Article  ADS  Google Scholar 

  27. Seaton M J 1983 Rep. Prog. Phys. 46 167.

    Article  ADS  Google Scholar 

  28. Connerade J P 1998 Highly Excited Atoms (Cambridge: Cambridge University Press)

    Book  Google Scholar 

  29. Lee C M and Johnson W R 1980 Phys. Rev. A 22 272.

    Article  MathSciNet  Google Scholar 

  30. Bashkin S and Stoner J O 1975 Atomic Energy Levels and Grotrian Diagrams Vol 1. (Amsterdam: North-Holland Publishing Company)

    Google Scholar 

  31. Seaton M J 1958 Mon. Not. R. Astr. Soc. 118 504.

    MATH  ADS  MathSciNet  Google Scholar 

  32. Brown G E and Schaefer G W 1956 Proc. Roy. Soc. A 233 527.

    Article  ADS  Google Scholar 

  33. Wichmann E H and Kroll N M 1956 Phys. Rev. 101 843.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Mohr P J and Taylor B N 2000 Rev Mod Phys 72 351 (CODATA recommended values of the fundamental physical constants: 1998)

    Article  ADS  Google Scholar 

  35. Kinoshita T 2001 in [The Hydrogen Atom. Precision Physics of Simple Atomic systems 47, pp. 155–175]

    ADS  MathSciNet  Google Scholar 

  36. Foldy L L and Wouthuysen S A 1950 Phys. Rev. 78 29.

    Article  MATH  ADS  Google Scholar 

  37. Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill Book Co.)

    Google Scholar 

  38. Wolf A, Reiher M and Hess B A 2002 in [Relativistic Electronic structure Theory, Part 1: Fundamentals. (Theroetical and Computational Chemistry41, Chapter 11].

    Google Scholar 

  39. Douglas M and Kroll N M 1974 Ann Phys (NY) 82 89.

    Article  ADS  Google Scholar 

  40. Hess B A1986 Phys Rev A 32 756; — Phys Rev A 33 3742.

    Article  ADS  Google Scholar 

  41. Schwerdtfeger P (ed.) 2002 Relativistic Electronic structure Theory, Part 1: Fundamentals. (Theroetical and Computational Chemistry, Vol. 11) (Amsterdam: Elsevier Science B.V.)

    Google Scholar 

  42. JØrgensen F 1975 Mol. Phys. 1137.

    Google Scholar 

  43. Bellman R 1970 Introduction to Matrix Analysis (2e) (New York: Mc Graw-Hill Book Company)

    MATH  Google Scholar 

  44. Thaller B 1992 The Dirac Equation (New York: Springer-Verlag)

    Google Scholar 

  45. Bagrov B G and Gitman D M Exact Solutions of Relativistic Wave Equations (Dordrecht: Kluwer Academic Publishers)

    Google Scholar 

  46. Dowling J P (ed.) 1997 Electron Theory and Quantum Electrodynamics: 100 years later (New York: Plenum Press)

    Google Scholar 

  47. Karshenboim S G, Pavone F S, Bassani F, Inguscio M and HÄnsch TW 2001 The Hydrogen Atom. Precision Physics of Simple Atomic systems (Berlin: Springer-Verlag)

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). The Dirac Equation. In: Grant, I.P. (eds) Relativistic Quantum Theory of Atoms and Molecules. Springer Series on Atomic, Optical, and Plasma Physics, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-0-387-35069-1_3

Download citation

Publish with us

Policies and ethics