Skip to main content

The Role of El Niño—Southern Oscillation in Regulating its Background State

  • Conference paper
Nonlinear Dynamics in Geosciences

Abstract

A nonlinear aspect of the El Niño—Southern Oscillation (ENSO)—its regulatory effect on the background state (the climatological state)—is described. In particular, it is shown that ENSO acts as a basin-scale heat “mixer” that prevents any significant increase from occurring in the time-mean difference between the warm-pool SST (Tw) and the temperature of the thermocline water (Tc). When this temperature contrast is forced to increase, the amplitude of ENSO increases—El Niño becomes warmer and La Niña becomes colder. A stronger La Niña event results in more heat transported to the subsurface of the western Pacific. A stronger El Niño event then warms the eastern Pacific and cools the western Pacific. The effect of a stronger La Niña event does not cancel the effect from a stronger El Niño event. The long-term mean effect of ENSO—the recurrent occurrence of El Niño and La Niña events—is to mix heat downward across the equatorial Pacific and prevent the time-mean difference between Tw and Tc from exceeding a critical value.

The results have implications for several climatic issues and these implications are discussed. In particular, it is noted that our existing paradigm to understand the response of ENSO to global warming needs to be modified. It is emphasized that it is the tendency in the stability forced by an increase in the greenhouse effect, not the actual changes in the time-mean climate, that ENSO responds to. Changes in the latter—changes in the mean climate—are a residual between the effect of the changes in the radiative forcing and the effect of the changes in the ENSO behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Battisti, D.S., 1988: The dynamics and thermodynamics of a warm event in acoupled ocean-atmosphere model, J. Atmos. Sci, 45, 2889-2919

    Article  Google Scholar 

  • Carton, J.A., G. Chepurin, X. Cao, and B.S. Giese, 2000a: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995, Part 1: methodology, J. Phys. Oceanogr., 30, 294-309.

    Article  Google Scholar 

  • Fedorov, A.V., and S.G. Philander, 2000: Is El Nino Changing? Science, 288, 1997-2002.

    Article  Google Scholar 

  • Gent, P.R., and M.A. Cane, 1989: A reduced gravity, primitive equation model of the upper equatorial ocean. J. Compute. Phys., 81, 444-480.

    Article  Google Scholar 

  • Jin, F.F., 1996: Tropical ocean-atmosphere interaction, the Pacific cold-tongue, and the El Nino-Southern Oscillation. Science, 274, 76-78.

    Article  Google Scholar 

  • Kalnay, E. and 21 coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-471.

    Article  Google Scholar 

  • Neelin, J.D., D.S. Battiti, A.C. Hirst, F.F. Jin, Y. Wakata, T. Yamagata, and S. Zebiak, 1998: ENSO Theory. J. Geophys. Res., 103, 14261-14290.

    Article  Google Scholar 

  • Penland, C., Flügel, M., and P. Chang, 2000: Identification of Dynamical Regimes in an Intermediate Coupled Ocean-Atmosphere Model J. of Climate,13, pp. 2105-2115.

    Article  Google Scholar 

  • Penland, C, and PD Sardeshmukh, 1995: The Optimal Growth of Tropical Sea Surface Temperature Anomalies J. Climate, 8, 1999-2024.

    Article  Google Scholar 

  • Philander, S.G., 1990: El Nino, La Nina, and the Southern Oscillation. Academic Press, New York, 293 pp.

    Google Scholar 

  • Rodgers, K.B., P. Friederichs, and M. Latif, 2004: Tropical Pacific Decadal Variability and its Relation to Decadal Modulations of ENSO. J. Climate, 17, 3761-3774.

    Article  Google Scholar 

  • Schopf, P. and R. Burgman, 2005: A Simple Mechanism for ENSO Residuals and Asymmetry. J. Climate, Accepted.

    Google Scholar 

  • Schneider, N., A. J. Miller, M.A. Alexander, C. Deser, 1999: Subduction of Decadal North Pacific Temperature Anomalies: Observations and Dynamics, J. Phys. Oceanogr., 29, 1056-1070.

    Article  Google Scholar 

  • Shin, S.-I and Z. Liu, 2000: Response of the equatorial thermocline to extratropical buoyancy forcing. J. Phys. Oceanogr., 30, 2883-2905.

    Article  Google Scholar 

  • Sun, D.-Z., 1997: El Niño: a coupled response to radiative heating? Geophys. Res. Lett., 24, 2031-2034.

    Article  Google Scholar 

  • Sun, D.-Z., 2000: The heat sources and sinks of the 1986-87 El Niño, J. Climate, 13, 3533-3550.

    Article  Google Scholar 

  • Sun, D.-Z., 2003: A Possible Effect of An Increase in the Warm-pool SST on the Magnitude of El Niño Warming. J. Climate, 16, 185-205.

    Article  Google Scholar 

  • Sun, D.-Z. and Z. Liu, 1996 : Dynamic ocean-atmosphere coupling: a thermostat for the tropics. Science, 272, 1148-1150.

    Article  Google Scholar 

  • Sun, D.-Z. and K.E. Trenberth, 1998: Coordinated heat removal from the equatorial Pacific during the 1986-87 El Niño. Geophys. Res. Lett., 25, 2659-2662.

    Article  Google Scholar 

  • Sun, D.-Z., T. Zhang, C. Covey, S. Klein, W.D. Collins, J.J. Hack, J.T. Kiehl, G.A. Meehl, I.M. Held, and M. Suarez, 2005: Radiative and Dynamical Feedbacks Over the Equatorial Cold-tongue: Results from Nine Atmospheric GCMs. J. Climate, 19, 4059-4074.

    Article  Google Scholar 

  • Sun, D.-Z., T. Zhang, and S.-I. Shin, 2004 : The effect of subtropical cooling on the amplitude of ENSO: a numerical study. J. Climate, 17, 3786-3798.

    Article  Google Scholar 

  • Tsonis, A.A. ,J.B. Elsner, A.G. Hunt and T.H. Jagger, 2005: Unfolding the relation between global temperature and ENSO. Geophys. Res. Lett. doi:10.1029/2005GL022875.

    Google Scholar 

  • Wang, C., S.-P. Xie, and J. A. Carton, 2004: A global survey of ocean-atmosphere interaction and climate variability. In: Earth’s Climate: The Ocean-Atmosphere Interaction. C. Wang, S.-P. Xie, and J. A. Carton, Eds., AGU Geophysical Monograph.

    Google Scholar 

  • Wyrtki, K., 1981: An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr., 11 (9), 1205-1214.

    Article  Google Scholar 

  • Wyrtki, K., 1985. Water displacements in the Pacific and the genesis of El Niño cycles, J. Geophys. Res.-Oceans, 90, 7129-7132.

    Google Scholar 

  • Xie, P., and P.A. Arkin, 1996: Analyses of Global Monthly Precipitation Using Gauge Observations, Satellite Estimates, and Numerical Model Predictions. J. Climate, 9, 840-858.

    Article  Google Scholar 

  • Xu, K.M., and K. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 1471-1479.

    Article  Google Scholar 

  • Yeh, S.-W. and B.P. Kirtman, 2004: Tropical decadal variability and ENSO amplitude modulations in a CGCM J. Geophys. Res. 109, doi:10.1029/2004JC002442.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sun, DZ. (2007). The Role of El Niño—Southern Oscillation in Regulating its Background State. In: Nonlinear Dynamics in Geosciences. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34918-3_29

Download citation

Publish with us

Policies and ethics