Dynamical synchronization of truth and model as an approach to data assimilation, parameter estimation, and model learning

  • Gregory S. Duane
  • Joseph J. Tribbia


Data Assimilation Travel Salesman Problem Potential Vorticity Lorenz System Chaos Synchronization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afraimovich, V. S., Verichev, N. N., and Rabinovich, M. I. (1986) Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 29, 795-803.CrossRefGoogle Scholar
  2. Anderson, J. L. (2001) An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev. 129, 2884-2903.CrossRefGoogle Scholar
  3. Anderson, J. L. (2003) A local least-squares framework for ensemble filtering. Mon. Wea. Rev. 131, 634-642.CrossRefGoogle Scholar
  4. Daley, R. (1991) Atmospheric Data Analysis, Cambridge Univ. Press, Cambridge.Google Scholar
  5. Duane, G.S. (1997) Synchronized chaos in extended systems and meteorological teleconnections. Phys. Rev. E 56, 6475-6493.CrossRefGoogle Scholar
  6. Duane, G.S. (2003) Synchronized chaos in climate dynamics, in: In, V., Kocarev, L., Carroll, T.L. et al. (Eds.), AIP Conference Proceedings 676, Melville, New York, pp. 115-126.Google Scholar
  7. Duane, G.S. and Tribbia, J.J. (2001) Synchronized chaos in geophysical fluid dynamics. Phys. Rev. Lett. 86, 4298-4301.CrossRefGoogle Scholar
  8. Duane, G.S. and Tribbia, J.J. (2004) Weak Atlantic-Pacific teleconnections as synchronized chaos. J. Atmos. Sci. 61, 2149-2168.CrossRefGoogle Scholar
  9. Duane, G.S., Tribbia, J.J., and Weiss, J.B. (2006) Synchronicity in predictive modelling: a new view of data assimilation. Nonlin. Processes in Geophys. 13, 601-612.Google Scholar
  10. Duane, G.S., Yu, D., and Kocarev, L. (2007) Identical synchronization, with translation invariance, implies parameter estimation. submitted to Phys. Lett. A.Google Scholar
  11. Fujisaka, H. and Yamada, T. (1983) Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69, 32-47.CrossRefGoogle Scholar
  12. Hopfield, J.J. and Tank, D.W. (1985)“Neural” computation of decisions in optimization problems. Biol. Cybern. 52, 141-152.Google Scholar
  13. Hoppensteadt, F.C. (1996) Synaptic organizations and dynamical properties of weakly connected neural oscillators 2. Learning phase information. Biol. Cybern. 75, 129-135.CrossRefGoogle Scholar
  14. Huygens, C. (1673)Horoloqim Oscillatorium. Apud. F. Muget.Google Scholar
  15. Jung, C. G. and Pauli, W. (1955) The interpretation of nature and the psyche, Pantheon, New York.Google Scholar
  16. Kocarev, L., Tasev, Z., and Parlitz, U. (1997) Synchronizing spatiotemporal chaos of partial differential equations. Phys. Rev. Lett. 79, 51-54.CrossRefGoogle Scholar
  17. Lorenz, E. N. (1963) Deterministic nonperiodic flows. J. Atmos. Sci. 20, 130-141.CrossRefGoogle Scholar
  18. Parlitz, U. (1996) Estimating model parameters from time series by autosynchronization. Phys. Rev. Lett. 76, 1232-1235.CrossRefGoogle Scholar
  19. Parlitz, U. and Kocarev, L. (1997) Using surrogate data analysis for unmasking chaotic communication systems. Int. J. Bifurcations and Chaos 7, 407-413.CrossRefGoogle Scholar
  20. Pecora, L. M. and Carroll, T. L. (1990) Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821-824.CrossRefGoogle Scholar
  21. Pecora, L. M., Carroll, T. L., Johnson, G. A., Mar, D. J., and Heagy, J. F. (1997) Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos 7, 520-543.CrossRefGoogle Scholar
  22. Rulkov, N. F., Sushchik, M. M., and Tsimring, L. S. (1995) Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980-994.CrossRefGoogle Scholar
  23. So, P., Ott, E., and Dayawansa, W. P. (1994) Observing chaos – deducing and tracking the state of a chaotic system from limited observation. Phys. Rev. E 49, 2650-2660.CrossRefGoogle Scholar
  24. Strogatz, S. H. (2003) Sync: The Emerging Science of Spontaneous Order. Theia, New York.Google Scholar
  25. Vautard, R., Legras, B., and Déqué, M. (1988) On the source of midlatitude low-frequency variability. Part I: A statistical approach to persistence. J. Atmos. Sci. 45, 2811-2843.CrossRefGoogle Scholar
  26. Von Der Malsburg, C. and Schneider, W. (1986) A neural cocktail-party processor. Biol. Cybernetics 54, 29-40.CrossRefGoogle Scholar
  27. Yang, S.-C., Baker, D., Cordes, K., Huff, M., Nagpal, G., Okereke, E., Villafañe, J., and Duane, G. S. (2006) Data assimilation as synchronization of truth and model: Experiments with the three-variable Lorenz system. J. Atmos. Sci. 63, 2340-2354.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Gregory S. Duane
    • 1
  • Joseph J. Tribbia
    • 1
  1. 1.National Center for Atmospheric ResearchBoulder

Personalised recommendations