Skip to main content

Incoherent Beam Superposition and Stacking

  • Chapter
High Power Diode Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 128))

Abstract

Beam quality is a measure of how tightly a beam can be focused. The higher the beam quality, the smaller the spot size and the higher the laser intensity. According to the ISO-standard [4.1] this property can be characterized by the beam-parameter product (Q or BPP), multiplying the waist radius (w 0) and the far-field divergence (θ 0) of the beam. In the best case, i.e., without any aberrations, this beam-parameter product remains constant, if the beam is transformed by passive optical components such as lenses or mirrors (Eq. 4.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ISO/DIS-Standard 11 146, International Organization for Standardization.

    Google Scholar 

  2. Born M, Wolf E (1980) Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge.

    Google Scholar 

  3. Albers P, Heimbeck HJ, Langenbach E (1993) Focusing of diode lasers for high beam quality in high-power applications Lens and Optical Systems Design, Proceedings of the SPIE 1780, 533–538.

    Google Scholar 

  4. Clarkson WA, Hanna DC (1996) Two-mirror beam-shaping technique for high-power diode bars. Optics Letters 21(6), 375–377.

    Article  ADS  Google Scholar 

  5. Endriz J (1992) Brightness conserving optical system for modifying beam symmetry. US Patent 5,168,401.

    Google Scholar 

  6. Ehlers B, Du K, Baumann M, Treusch HG, Loosen P, Poprawe R (1997) Beam shaping and fibre coupling of high-power diode laser arrays. Proceedings of the SPIE 3097, 639–644.

    Google Scholar 

  7. Sturm V, Treusch HG, Loosen P (1997) Cylindrical micro-lenses for collimating high-power diode lasers. Proceedings of SPIE 3097, 717–726.

    Google Scholar 

  8. Loosen P, Treusch HG, Haas CR, Gardenier U (1995) High-power laser-diodes and their direct industrial applications. Proceedings of the SPIE 2382, 78–88.

    Google Scholar 

  9. Biesenbach J, Loosen P, Treusch HG, Krause V, Kösters A, Zamel S, Hilgers W (1994) Fabrication of aspheric cylindrical micro-lenses with the diamond turning technology. Proceedings of the SPIE 2263, 152–163.

    Google Scholar 

  10. Product information (1999) Limo Corp./ Dortmund, Germany (http://www.limo.de).

    Google Scholar 

  11. Loosen P (2001) High-power diode lasers for direct applications in high-power diode lasers. In Diehl R (ed.): Springer Series Topics in Applied Physics, volume 78.

    Google Scholar 

  12. Huke S (2001) Mikrooptikmontage im Hochleistungsdiodenlaserstapel, Diplomarbeit, University of applied sciences, Münster.

    Google Scholar 

  13. Smith WJ (1990) Modern Optical Engineering: The Design of Optical Systems, 2nd Edition. McGraw-Hill, New York, pp. 263–265.

    Google Scholar 

  14. Litfin G (2001) Technische Optik in der Praxis. Springer-Verlag, Berlin, Hiedleburg.

    MATH  Google Scholar 

  15. Ebert M, Ebert J (2000) Magnetron-Sputtern im Mikrowellenplasma im Vergleich zu konventionellen Aufdampfverfahren. Photonik 1, 34.

    Google Scholar 

  16. Groß T (2002) Wellenlängenmultiplex-Verfahren für die Direktanwendung von Hochleistungs-Laserdioden. In Diehl R (ed.): Optische Technologien Band 5, Hochleistungsdiodenlaser für die Direktanwendung, (Projektverband NOVALAS), p. 51.

    Google Scholar 

  17. Knitsch A, Luft A (2002) Diodenlasermodule höchster Brillanz für die Lasermaterialbearbeitung. In Diehl R (ed.): Optische Technologien Band 5, Hochleistungsdiodenlaser für die Direktanwendung, (Projektverband NOVALAS), p. 17.

    Google Scholar 

  18. Bachmann F (2004) Chances and limitations of high power diode lasers in highpower diode laser technology and applications II. In Mark S. Zediker (ed.): Proceedings of the SPIE 5336, p. 95.

    Google Scholar 

  19. Yamaguchi S, Daimon M, Chiba K, Kobayashi T, Saito Y(1996) Optical path rotating device used with linear array laser diode and laser apparatus applied therewith. US Patent 5,513,201.

    Google Scholar 

  20. Head D, Baer T (1996) Apparatus for coupling a multiple emitter laser diode to a multimode optical fiber. International Patent WO 96/38749.

    Google Scholar 

  21. Ullmann C, Krause V, Koesters A (1998) Optical arrangement for use in a laser diode system. US Patent 5,808,803.

    Google Scholar 

  22. Lissotschenko V, Mikhailov A (1999) Anordnung und Vorrichtung zur optischen Strahltransformation. European Patent EP 1 006 382.

    Google Scholar 

  23. Nightingale JL, Rekow M (2000) Laser diode integrating enclosure and detector. US Patent 6,061,374.

    Google Scholar 

  24. Goering R, Schreiber P, Heinemann S, Roellig U, Nickel M (2002) Optical arrangement for balancing the beam of one or more high power diode lasers arranged one above another. US Patent 6,337,873.

    Google Scholar 

  25. Biesenbach J, Pfeffer F, Noeske A (2000) Einrichtung zur Strahlformung eines Laserstrahls und Hochleistungs-Diodenlaser mit einer solchen Einrichtung. German Patent DE 198 46 532 C1.

    Google Scholar 

  26. Krause V, Ullmann C (1997) Laseroptik sowie Diodenlaser. European Patent EP 0 863 588.

    Google Scholar 

  27. Kugler N, Ashkenasi D (2002) Strahlformung und Symmetrisierung der Emission von mikrokanalgekühlten cw-stacked Arrays für die Direktanwendung mit dem, Beam-Twister. In Diehl R (ed.): Optische Technologien Band 5, Hochleistungsdiodenlaser für die Direktanwendung, (Projektverband NOVALAS), p.69.

    Google Scholar 

  28. Product information (2004) Rofin-Sinar-Laser; Hamburg (http://www.rofin.com/); Dilas Diodenlaser GmbH, Mainz (http.//www.dilas.com).

    Google Scholar 

  29. Raab V, Skoczowski D, Menzel R (2003) Tunable broad area diode lasers with improved brightness and brilliance. LASE. Proceedings of the SPIE 4973.

    Google Scholar 

  30. Chi M, Thestrup B, Mortensen JL, Nielsen ME, Petersen PM (2003) Improvement of the beam quality of a diode laser with two active broad-area segments. Journal of Optics A: Pure and Applied Optics 5, 338–341.

    Article  ADS  Google Scholar 

  31. Brauch U (2001) Coherent beam combining in High-Power Diode Lasers. In Diehl R (ed.): Springer Series Topics in Applied Physics 78.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Loosen, P., Knitsch, A. (2007). Incoherent Beam Superposition and Stacking. In: Bachmann, F., Loosen, P., Poprawe, R. (eds) High Power Diode Lasers. Springer Series in Optical Sciences, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34729-5_4

Download citation

Publish with us

Policies and ethics