Skip to main content

Self-focusing, Conical Emission, and Other Self-action Effects in Atomic Vapors

  • Chapter
Self-focusing: Past and Present

Part of the book series: Topics in Applied Physics ((TAP,volume 114))

Abstract

A broad overview of self-action effects in atomic vapors, such as self-focusing, self-trapping and pattern-formation, is presented. Different theoretical models that describe conical emission in atomic media are discussed, together with supporting experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. Boyd: Nonlinear Optics, 2nd ed., Academic Press, San Diego (2003); see Section 6.3.

    Google Scholar 

  2. D.H. Close: Strong-field saturation effects in laser media, Phys. Rev. 153, 360–371 (1967).

    Article  ADS  Google Scholar 

  3. M. Saffman: Private communication. We are grateful to M. Saffman for pointing out some small errors in the formulas in [60]. The form of the equations used in the present document are those of Dr. Saffman.

    Google Scholar 

  4. D. Grischkowsky: Self-focusing of light by potassium vapor, Phys. Rev. Lett. 24, 866 (1970).

    Article  ADS  Google Scholar 

  5. A. Javan, P.L. Kelley: Possibility of self-focusing due to intensity-dependent anomalous dispersion, IEEE J. Quant. Electron. QE-2, 470 (1966).

    Article  ADS  Google Scholar 

  6. D. Grischkowsky, J.A. Armstrong: Self-defocusing of light by adiabatic following in rubidium vapor, Phys. Rev. A 6, 1566 (1972).

    Article  ADS  Google Scholar 

  7. J.E. Bjorkholm, A. Ashkin: cw self-focusing and self-trapping of light in sodium vapor, Phys. Rev. Lett. 32, 129 (1974).

    Article  ADS  Google Scholar 

  8. D. Grischkowsky, E. Courtens, W. Armstrong: Observation of self-steepening of optical pulses with possible shock formation, Phys. Rev. Lett. 31, 422–425 (1973).

    Article  ADS  Google Scholar 

  9. A.C. Tam, W. Happer: Long-range interactions between cw self-focused laser-beams in an atomic vapor, Phys. Rev. Lett. 38, 278–282 (1977).

    Article  ADS  Google Scholar 

  10. R.R. Alfano, S.L. Shapiro: Emission in the region 4000 to 7000 Å via four-photon coupling in glass, Phys. Rev. Lett. 24, 584–587 (1970).

    Article  ADS  Google Scholar 

  11. I. Golub, R. Shuker, G. Erez: On the optical characteristics of the conical emission, Opt. Commun. 57, 143–145 (1986).

    Article  ADS  Google Scholar 

  12. D.J. Harter, P. Narum, M.G. Raymer et al.: Four-wave parametric amplification of rabi sidebands in sodium, Phys. Rev. Lett. 46, 1192–1195 (1981).

    Article  ADS  Google Scholar 

  13. D.J. Harter, R. W. Boyd: Four-wave mixing resonantly enhanced by ac-stark-split levels in self-trapped filaments of light, Phys. Rev. A 29, 739–748 (1984).

    Article  ADS  Google Scholar 

  14. M.L. Ter-Mikaelian, G.A. Torossian, G.G. Grigoryan: Conical emission in the quasi-resonant media as a result of self-phase modulation, Opt. Commun. 119, 56–60 (1995).

    Article  ADS  Google Scholar 

  15. G. Brechignac, P. Cahuzac, A. Debarre: Anomalous off-axis emissions on the resonance strontium line, illuminated by a quasi-resonant pulsed laser-light, Opt. Commun. 35, 87–91 (1980).

    Article  ADS  Google Scholar 

  16. R.C. Hart, Y. Li, A. Gallagher et al.: Failures of the four-wave mixing model for cone emission, Opt. Commun. 111, 331–337 (1994).

    Article  ADS  Google Scholar 

  17. B.D. Paul, M.L. Dowell, A. Gallagher et al.: Observation of conical emission from a single self-trapped atom, Phys. Rev. A 59, 4784–4796 (1999).

    Article  ADS  Google Scholar 

  18. M. Fernández Guasti, J.L. Hernández Pozos, E. Haro Poniatowski et al.: Anomalous conical emission in calcium vapor, Opt. Commun. 108, 367–376 (1994).

    Article  ADS  Google Scholar 

  19. C.H. Skinner, P.D. Kleiber: Observation of anomalous conical emission from laser-excited barium vapor, Phys. Rev. A 21, 151–156 (1980).

    Article  ADS  Google Scholar 

  20. W. Chalupczak, W. Gawlik, J. Zachorowski: Degenerate parametric emission in dense barium vapor, Opt. Commun. 111, 613–622 (1994).

    Article  ADS  Google Scholar 

  21. J.F. Valley, G. Khitrova, H.M. Gibbs et al.: cw conical emission: first comparison and agreement between theory and experiment, Phys. Rev. Lett. 64, 2362–2365 (1990).

    Article  ADS  Google Scholar 

  22. M. Leberrerousseau, E. Ressayre, A. Tallet: Self-induced generation of an off-axis frequency shifted radiation from atoms, Opt. Commun. 36, 31–34 (1981).

    Article  ADS  Google Scholar 

  23. D.J. Harter, R.W. Boyd: Conical emission due to four-wave mixing enhanced by the ac-stark effect in self-trapped filaments of light, Opt. Lett. 7, 491–493 (1982).

    Article  ADS  Google Scholar 

  24. A.I. Plekhanov, S.G. Rautian, V.P. Safonov et al.: Frequency-angular diffusion of intense quasiresonant radiation, JETP Lett. 36, 284 (1982).

    ADS  Google Scholar 

  25. I. Golub, G. Erez, R. Shuker: Cherenkov emission due to laser-induced moving polarization in sodium, J. Phys. B 19, L115–L120 (1986).

    Article  ADS  Google Scholar 

  26. I. Golub, R. Shuker, G. Erez: Anomalous blue-shifted emission near the \(D1\) transition from laser-excited sodium vapor, J. Phys. B 20, L63–L68 (1987).

    Article  ADS  Google Scholar 

  27. Y. Shevy, M. Rosenbluh: Multiple conical emissions from a strongly driven atomic system, J. Opt. Soc. Am. B 5, 116–122 (1988).

    Article  ADS  Google Scholar 

  28. M.E. Crenshaw, C.D. Cantrell: Conical emission as a result of pulse breakup into solitary waves, Phys. Rev. A 39, 126–148 (1989).

    Article  ADS  Google Scholar 

  29. A.A. Afanas’ev, B.A. Samson, R. Yakite: Conical emission at light self-focusing in resonant media, Laser Physics 1, 399 (1991).

    Google Scholar 

  30. W. Chalupczak, W. Gawlik, J. Zachorowski: Conical emission in barium vapor, Opt. Commun. 99, 49–54 (1993).

    Article  ADS  Google Scholar 

  31. W. Chalupczak, W. Gawlik, J. Zachorowski: Conical emission as cooperative fluorescence, Phys. Rev. A 49, R2227–R2230 (1994).

    Article  ADS  Google Scholar 

  32. J. Guo, J. Cooper, A. Gallagher: Generation of transient Rabi sidebands in pulse propagation: A possible source of cone emission, Phys. Rev. A 52, R3440–R3443 (1995).

    Article  ADS  Google Scholar 

  33. A. Dreischuh, V. Kamenov, S. Dinev et al.: Spectral and spatial evolution of a conical emission in Na vapor, J. Opt. Soc. Am. B 15, 34 (1997).

    Article  ADS  Google Scholar 

  34. L. You, J. Mostowski, J. Cooper et al.: Cone emission from laser-pumped two-level atoms, Phys. Rev. A 44, R6998–R7001 (1991).

    Article  ADS  Google Scholar 

  35. W.K. Lee, Y.C. Noh, J.H. Jeon J. Lee et al.: Conical emission as a result of self-phase modulation in samarium vapor under the near-resonant condition, J. Opt. Soc. Am. B 18, 101–105 (2001).

    Google Scholar 

  36. R.W. Boyd, M.G. Raymer, P. Narum et al.: Four-wave parametric interactions in a strongly driven two-level system, Phys. Rev. A 24, 411–423 (1981).

    Article  ADS  Google Scholar 

  37. P. Narum, R.W. Boyd: (unpublished).

    Google Scholar 

  38. M.T. Gruneisen, K.R. Macdonald, R.W. Boyd: Induced gain and modified absorption of a weak probe beam in a strongly driven sodium vapor, J. Opt. Soc. Am. B-Opt. Phys. 5, 123–129 (1988).

    Article  ADS  Google Scholar 

  39. B.D. Paul, J. Cooper, A. Gallagher et al.: Theory of optical near-resonant cone emission in atomic vapor, Phys. Rev. A 66, 063816 (2002).

    Article  ADS  Google Scholar 

  40. W. Gawlik, R. Shuker, A. Gallagher: Temporal character of pulsed-laser cone emission, Phys. Rev. A 64 (2001).

    Google Scholar 

  41. L.A. Chauchard, Y.H. Meyer: On the origin of the so-called conical emission in laser-pulse propagation in atomic vapor, Opt. Commun. 52, 141–144 (1984).

    Article  ADS  Google Scholar 

  42. D. Sarkisyan, B.D. Paul, S.T. Cundiff et al.: Conical emission by 2-ps excitation of potassium vapor, J. Opt. Soc. Am. B 18, 218–224 (2001).

    Article  ADS  Google Scholar 

  43. Y.H. Meyer: Multiple conical emissions from near resonant laser propagation in dense sodium vapor, Opt. Commun. 34, 439–444 (1980).

    Article  ADS  Google Scholar 

  44. A.I. Plekhanov, S.G. Rautian, V.P. Safonov et al.: The nature of frequency-angular diffusion of powerful quasiresonant radiation, JETP Lett. 61, 249–254 (1985).

    Google Scholar 

  45. Y. Shevy, M. Rosenbluh, S. Hochman et al.: Polarization dependence of resonance-enhanced 3-photon scattering, Opt. Lett. 13, 1005–1007 (1988).

    Article  ADS  Google Scholar 

  46. M.L. Dowell, R.C. Hart, A. Gallagher et al.: Self-focused light propagation in a fully saturable medium: Experiment, Phys. Rev. A 53, 1775–1781 (1996).

    Article  ADS  Google Scholar 

  47. M.L. Dowell, B.D. Paul, A. Gallagher et al.: Self-focused light propagation in a fully saturable medium: Theory, Phys. Rev. A 52, 3244–3253 (1995).

    Article  ADS  Google Scholar 

  48. J. Krasinski, D.J. Gauthier, M.S. Malcuit et al.: Two-photon conical emission, Opt. Commun. 54, 241–245 (1985).

    Article  ADS  Google Scholar 

  49. V. Vaicaitis, A. Piskarskas: Tunable four-photon picosecond optical parametric oscillator, Opt. Commun. 117, 137–141 (1995).

    Article  ADS  Google Scholar 

  50. T. Efthimiopoulos, M.E. Movsessian, M. Katharakis et al.: Study of the \(\ 5P_{3/2}-4S_{1/2}\) emission in K under two-photon \(\ 4S_{1/2}-6S_{1/2}\) excitation, J. Phys. B 29, 5619–5627 (1996).

    Article  ADS  Google Scholar 

  51. V. Vaicaitis, S. Paulikas: Resonantly enhanced parametric four-wave mixing in sodium vapour, Opt. Commun. 247, 187–193 (2005).

    Article  ADS  Google Scholar 

  52. V. Vaicaitis, S. Paulikas: Resonantly enhanced parametric four-wave mixing in sodium vapour, Opt. Commun. 247, 187–193 (2005).

    Article  ADS  Google Scholar 

  53. G. Grynberg, E. Lebihan, P. Verkerk et al.: Observation of instabilities due to mirrorless four-wave mixing oscillation in sodium, Opt. Commun. 67, 363–366 (1988).

    Article  ADS  Google Scholar 

  54. J. Pender, L. Hesselink: Conical emissions and phase conjugation in atomic sodium vapor, IEEE J. Quantum Electron. 25, 395–402 (1989).

    Article  ADS  Google Scholar 

  55. J. Pender, L. Hesselink: Degenerate conical emissions in atomic-sodium vapor, J. Opt. Soc. Am. B 7, 1361–1373 (1990).

    Article  ADS  Google Scholar 

  56. M. Kauranen, J.J. Maki, A.L. Gaeta et al.: Two-beam-excited conical emission, Opt. Lett. 16, 943–945 (1991).

    Article  ADS  Google Scholar 

  57. A.A. Afanasev, B.A. Samson: Multiconical emission at light counterpropagation in a resonant medium, Phys. Rev. A 53, 591–597 (1996).

    Article  ADS  Google Scholar 

  58. M. Fernández Guasti, J.L. Hernández Pozos, E. Haro Poniatowski, L.A. Julio Sánchez: Anomalous conical emission: Two-beam experiments, Phys. Rev. A 49, 613–615 (1994).

    Article  ADS  Google Scholar 

  59. R.S. Bennink, V. Wong, A.M. Marino et al.: Honeycomb pattern formation by laser-beam filamentation in atomic sodium vapor, Phys. Rev. Lett. 88, 113901 (2002).

    Article  ADS  Google Scholar 

  60. M.S. Bigelow, P. Zerom, R.W. Boyd: Breakup of ring beams carrying orbital angular momentum in sodium vapor, Phys. Rev. Lett. 92, 083902 (2004).

    Article  ADS  Google Scholar 

  61. A.M.C. Dawes, L. Illing, S.M. Clark et al.: All-optical switching in rubidium vapor, Science 308, 672–674 (2005).

    Article  ADS  Google Scholar 

  62. F. Huneus, B. Schapers, T. Ackemann et al.: Optical target and spiral patterns in a single-mirror feedback scheme, Appl. Phys. B-lasers Optics 76, 191–197 (2003).

    Article  ADS  Google Scholar 

  63. A. Aumann, T. Ackemann, E.G. Westhoff et al.: Transition to spatiotemporally irregular states in a single-mirror feedback system, Int. J. Bifurcation Chaos 11, 2789–2807 (2001).

    Article  Google Scholar 

  64. T. Ackemann, A. Aumann, E.G. Westhoff et al.: Polarization degrees of freedom in optical pattern forming systems: alkali metal vapour in a single-mirror arrangement, J. Optics B-quantum Semiclassical Opt. 3, S124–S132 (2001).

    Article  ADS  Google Scholar 

  65. T. Ackemann, T. Lange: Optical pattern formation in alkali metal vapors: Mechanisms, phenomena and use, Appl. Phys. B-lasers Optics 72, 21–34 (2001).

    ADS  Google Scholar 

  66. W. Lange, T. Ackemann, A. Aumann et al.: Atomic vapors: a versatile tool in studies of optical pattern formation, Chaos Solitons & Fractals 10, 617–626 (1999).

    Article  Google Scholar 

  67. Z.H. Musslimani, L.M. Pismen: Resonant optical patterns in sodium vapor in a magnetic field, Phys. Rev. A 59, 1571–1576 (1999).

    Article  ADS  Google Scholar 

  68. A. Aumann, E. Buthe, Y.A. Logvin et al.: Polarized patterns in sodium vapor with single mirror feedback, Phys. Rev. A 56, R1709–R1712 (1997).

    Article  ADS  Google Scholar 

  69. A.J. Scroggie, W.J. Firth: Pattern formation in an alkali–metal vapor with a feedback mirror, Phys. Rev. A 53, 2752–2764 (1996).

    Article  ADS  Google Scholar 

  70. T. Ackemann, W. Lange: Nonhexagonal and nearly hexagonal patterns in sodium vapor generated by single-mirror feedback, Phys. Rev. A 50, R4468–R4471 (1994).

    Article  ADS  Google Scholar 

  71. G. Grynberg, A. Maitre, A. Petrossian: Flowerlike patterns generated by a laser-beam transmitted through a rubidium cell with single feedback mirror, Phys. Rev. Lett. 72, 2379–2382 (1994).

    Article  ADS  Google Scholar 

  72. N.B. Abraham, W.J. Firth: Overview of transverse effects in nonlinear-optical systems, J. Opt. Soc. Am. B-optical Phys. 7, 951–962 (1990).

    Article  ADS  Google Scholar 

  73. L. Allen, S.M. Barnett, M.J. Padgett: Optical Angular Momentum, Taylor and Francis, New York (2003).

    Book  Google Scholar 

  74. W.J. Firth, D.V. Skryabin: Optical solitons carrying orbital angular momentum, Phys. Rev. Lett. 79, 2450 (1997).

    Article  ADS  Google Scholar 

  75. V. Tikhonenko, J. Christou, B. Luther-Davies: Three-dimensional bright spatial soliton collision and fusion in a saturable nonlinear-medium, Phys. Rev. Lett. 76, 2698–2701 (1996).

    Article  ADS  Google Scholar 

  76. D.J. Gauthier, M.S. Malcuit, A.L. Gaeta et al.: Polarization bistability of counterpropagating laser-beams, Phys. Rev. Lett. 64, 1721–1724 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zerom, P., Boyd, R.W. (2009). Self-focusing, Conical Emission, and Other Self-action Effects in Atomic Vapors. In: Boyd, R.W., Lukishova, S.G., Shen, Y. (eds) Self-focusing: Past and Present. Topics in Applied Physics, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34727-1_9

Download citation

Publish with us

Policies and ethics