Skip to main content

Beam Shaping and Suppression of Self-focusing in High-Peak-Power Nd:Glass Laser Systems

  • Chapter
Self-focusing: Past and Present

Part of the book series: Topics in Applied Physics ((TAP,volume 114))

Abstract

Laser-beam shaping and suppression of beam self-focusing in high-peak-power Nd:glass laser systems are discussed. The role of Fresnel diffraction at apertures at the laser facility as the source of dangerous spatial scales for small-scale self-focusing is illustrated. Methods of the formation of super-Gaussian laser beams for suppressing diffraction ripples on the beam profile and their self-focusing are presented. A brief outline of self-focusing as the primary nonlinear optical process limiting the brightness of Nd:glass laser installations is given. Methods for self-focusing suppression are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.G. Basov, O.N. Krokhin: Conditions for heating up of a plasma by the radiation from an optical generator: Sov. Phys. JETP 19, 123–125 (1964).

    Google Scholar 

  2. N. Basov, P. Kriukov, S. Zakharov et al.: Experiments on the observation of neutron emission at a focus of high-power laser radiation on a lithium deuteride surface, IEEE J. Quant. Electr. QE-4, 864–867 (1968).

    Article  ADS  Google Scholar 

  3. F. Floux, D. Cognard, L-G. Denoeud et al.: Nuclear fusion reactions in solid-deuterium laser-produced plasma, Phys. Rev A 1, 821–824 (1970).

    Article  ADS  Google Scholar 

  4. D.C. Brown: High-Peak-Power Lasers, Springer, Berlin, Heidelberg, NY (1981).

    Google Scholar 

  5. A.A. Mak, L.N. Soms, V.A. Fromzel et al.: Nd:glass Lasers, Nauka, Moscow, 288 pp. (1990).

    Google Scholar 

  6. J.M. Soures (Ed.): Selected Papers on High-Power Lasers, SPIE Milestone Series of Selected Reprints MS 43, 711 pp. (1991).

    Google Scholar 

  7. W.W. Simmons, J.T. Hunt, W.E. Warren: Light propagation through large laser systems, IEEE J. Quant. Electr. QE-17, 1727–1744 (1981).

    Article  ADS  Google Scholar 

  8. W. Seka, J.M. Soures, S.D. Jacobs et al.: GDL: a high-power 0.35-μm laser irradiation facility, IEEE J. Quant. Electr. QE-17, 1689–1693 (1981).

    Article  ADS  Google Scholar 

  9. J. Bunkenberg, J. Boles, D.C. Brown et al.: The Omega high-power phosphate–glass system: design and performance, IEEE J. Quant. Elec. 17, 1620–1628 (1981).

    Article  ADS  Google Scholar 

  10. T.R. Boehly, R.S. Craxton, T.H. Hinterman et al.: The upgrade to the OMEGA laser system, Rev. Sci. Instrum. 66, 508–510 (1995).

    Article  ADS  Google Scholar 

  11. G.H. Miller, E.I. Moses, C.R. Wuest: The National Ignition Facility: enabling fusion ignition for the 21st century, Nucl. Fusion 44, S228–S238 (2004).

    Article  ADS  Google Scholar 

  12. N.G. Basov, P.G. Kryukov, Yu.V. Senatskii et al.: Production of powerful ultrashort light pulses in a neodymium glass laser, Sov. Phys. JETP 30, 641–645 (1970).

    ADS  Google Scholar 

  13. N.G. Basov, I. Kertes, P.G. Kryukov et al.: Nonlinear losses in generators and amplifiers of ultrashort light pulses, Sov. Phys. JETP 33, 289–293 (1971).

    ADS  Google Scholar 

  14. N.G. Bondarenko, I.V. Eremina, A.I. Makarov: Measurement of the coefficient of electronic nonlinearity in optical and laser glass, Sov. J. Quantum Electron. 8, 482–484 (1978).

    Article  ADS  Google Scholar 

  15. V.I. Bespalov, V.I. Talanov: Filamentary structure of light beams in nonlinear liquids, JETP Lett. 3, 307–310 (1966).

    Google Scholar 

  16. S.G. Lukishova, I.K. Krasyuk, P.P. Pashinin et al.: Apodization of light beams as a method of brightness enhancement in neodymium glass laser installations. In: Formation and Control of Optical Wave Fronts, Proceed. of the General Physics Institute of the USSR Academy of Science, P.P. Pashinin (Ed.), vol. 7, 92–147, Nauka Publ., Moscow (1987).

    Google Scholar 

  17. A.J. Campillo, J.E. Pearson, S.L. Shapiro et al.: Fresnel diffraction effects in the design of high-power laser systems, Appl. Phys. Lett 23, 85–87 (1973).

    Article  ADS  Google Scholar 

  18. N.G. Basov, A.R. Zaritskii, S.D. Zakharov et al.: Generation of high-power light pulses at wavelengths 1.06 and 0.53 μm and their application in plasma heating. II. Neodymium–glass laser with a second harmonic converter, Sov. J. Quant. Electron. 2, 533–535 (1973).

    Article  ADS  Google Scholar 

  19. J.A. Fleck, Jr., C. Layne: A study of self-focusing damage in a high-power Nd:glass rod amplifier, Appl. Phys. Lett. 22, 467–469 (1973).

    Article  ADS  Google Scholar 

  20. N.B. Baranova, N.E. Bykovskii, B.Ya. Zel’dovich et al.: Diffraction and self-focusing during amplification of high-power light pulses. I. Development of diffraction and self-focusing in an amplifier, Sov. J. Quant. Electron. 4, 1354–1361 (1975).

    Article  ADS  Google Scholar 

  21. N.B. Baranova, N.E. Bykovskii, B.Ya. Zel’dovich et al.: Diffraction and self-focusing during amplification of high-power light pulses. II. Suppression of harmful influence of diffraction and self-focusing on a laser beam, Sov. J. Quant. Electron. 4, 1362–1366 (1975).

    Article  ADS  Google Scholar 

  22. A.J. Campillo, S.L. Shapiro, B.R. Suydam: Periodic breakup of optical beams due to self-focusing, Appl. Phys. Lett. 23, 628–630 (1973).

    Article  ADS  Google Scholar 

  23. A.J. Campillo, S.L. Shapiro, B.R. Suydam: Relationship of self-focusing to spatial instability modes, Appl. Phys. Lett. 24, 178–180 (1974).

    Article  ADS  Google Scholar 

  24. A.N. Zherikhin, Yu.A. Matveets, and S.V. Chekalin: Self-focusing limitation of brightness in amplification of ultrashort pulses in neodymium glass and yttrium aluminum garnet, Sov. J. Quant. Electron. 6, 858–860 (1976).

    Article  ADS  Google Scholar 

  25. P.G. Kryukov, Yu.A. Matveets, Yu.V. Senatskii et al.: Mechanisms of radiation energy and power limitation in the amplification of ultrashort pulses in neodymium glass lasers, Sov. J. Quant. Electron. 3, 161–162 (1973).

    Article  ADS  Google Scholar 

  26. P. Jacquinot, B. Roizen-Dossier: Apodization. In: Progress in Optics, E. Wolf (Ed.), vol. 3, 29–186, North–Holland: Amsterdam (1964).

    Google Scholar 

  27. V.R. Costich, B.C. Johnson: Apertures to shape high-power laser beams, Laser Focus 10, (9), 43–46 (1974).

    Google Scholar 

  28. A.N. Zherikhin, P.G. Kryukov, Yu.A. Matveets et al.: Origin of the temporal structure of ultrashort laser pulses, Sov. J. Quant. Electron. 4, 525–526 (1974).

    Article  ADS  Google Scholar 

  29. D.M. Pennington, M.A. Henesian, R.W. Hellwarth: Nonlinear index of air at 1.053 μm, Phys. Rev. A 39, 3003–3009 (1989).

    Article  ADS  Google Scholar 

  30. M.A. Henesian, C.D. Swift, J.R. Murray: Stimulated rotational Raman scattering in nitrogen in long air paths, Opt. Lett. 10, 565–567 (1985).

    Article  ADS  Google Scholar 

  31. M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, UK, 952 pp. (2005).

    Google Scholar 

  32. A.E. Siegman: Lasers, University Science Books, Mill Valley, CA, 1283 pp. (1986).

    Google Scholar 

  33. J.R. Campbell, L.G. De Shazer: Near fields of truncated Gaussian apertures, J. Opt. Soc. Amer. 59, 1427–1429 (1969).

    Article  ADS  Google Scholar 

  34. J. Trenholme: A user-oriented axially symmetric diffraction code, LLNL: Semiannual Report, January–June, UCRL-50021-73-1, 46–47 (1973).

    Google Scholar 

  35. G.R. Hadley: Diffraction by apodized apertures, IEEE J. Quant. Electron. QE-10, 603–608 (1974).

    Article  ADS  Google Scholar 

  36. A. Dubik, A. Sarzyński: A study of the problem of propagation and focusing of laser radiation in an apertured super-Gaussian form, J. Techn. Phys. Polish Acad. Sci. 25 (3–4), 441–445 (1984).

    Google Scholar 

  37. J.M. Auerbach, V.P. Karpenko: Serrated-aperture apodizers for high-energy laser systems, Appl. Opt. 33, 3179–3183 (1994).

    Article  ADS  Google Scholar 

  38. B.M. Van Wonterghem, J.R. Murray, J.H. Campbell et al.: Performance of a prototype for a large-aperture multipass Nd:glass laser for inertial confinement fusion, Appl. Opt. 36, 4932–4853 (1997).

    Article  ADS  Google Scholar 

  39. J. Weaver: Initial beam shaping for a fusion laser, LLNL, Semiannual Report, January–June, UCRL–50021–73–1, 48–52 (1973).

    Google Scholar 

  40. V.N. Alekseev, A.D. Starikov, V.N. Chernov: Optimization of the spatial profile of a high-power optical beam in the amplifier channel of a neodymium–glass laser system, Sov. J. Quant. Electron. 9 1398–1402 (1979).

    Article  ADS  Google Scholar 

  41. I.K. Krasyuk, S.G. Lukishova, D.M. Margolin et al.: Induced absorption soft apertures, Sov. Tech. Phys. Lett. 2, 577–581, Leningrad (1976).

    Google Scholar 

  42. S.G. Lukishova: Apodized apertures for visible and near-infrared band powerful lasers, SPIE Milestone Series, Selected Papers on Apodization: Coherent Optical Systems, J.P. Mills and B.J. Thomson, (Eds.), MS 119, 334–341 (1996).

    Google Scholar 

  43. S.G. Lukishova, N.R. Minhuey Mendez, V.V. Ter-Mikirtychev, T.V. Tulajkova: Improving the beam quality of solid-state laser systems using both outside and inside cavity devices with variable optical characteristics along the cross section, SPIE Milestone Series, Selected Papers on Apodization: Coherent Optical Systems, J.P. Mills and B.J. Thomson, (Eds.), MS 119, 362–374 (1996).

    Google Scholar 

  44. A.J. Campillo, B. Carpenter, B.E. Newman et al.: Soft apertures for reducing damage in high-power laser amplifier systems, Opt. Commun. 10 (4), 313–315 (1974).

    Article  ADS  Google Scholar 

  45. A.J. Campillo, B.E. Newman, S.L. Shapiro et al.: Method and apparatus for reducing diffraction–induced damage in high-power laser amplifier systems, U.S. Patent No. 3,935,545, January 27, 1976.

    Google Scholar 

  46. E.W.S. Hee: Fabrication of apodized apertures for laser beam attenuation, Opt. Laser Technol. 7 (2), 75–79 (1975).

    Article  ADS  Google Scholar 

  47. Five-gigawatt coating reduces self-focusing in laser glass, Laser Focus 9 (9), 46 (1973).

    Google Scholar 

  48. G. Emiliani, A. Piegari, S. de Silvestri et al.: Optical coatings with variable reflectance for laser mirrors, Appl. Opt. 28, 2832–2837 (1989).

    Google Scholar 

  49. G. Duplain, P.G. Verly, J.A. Dobrowolski et al.: Graded-reflectance mirrors for beam quality control in laser resonators, Appl. Opt. 32, 1145–1153 (1993).

    Article  ADS  Google Scholar 

  50. S.G. Lukishova, S.A. Chetkin, N.V. Mettus et al.: Techniques for fabrication of multilayer dielectric graded–reflectivity mirrors and their use for enhancement of the brightness of the radiation from a multimode Nd3+:YAG laser with a stable cavity, Quant. Electron. 26, 1014–1017 (1996).

    Article  ADS  Google Scholar 

  51. Pure Appl Opt, Special Issue, 3 (4), 417–599, Papers presented at the workshop on laser resonators with graded reflectance mirrors, 8–9 September 1993 (1994).

    Google Scholar 

  52. S.B. Arifzhanov, R.A. Ganeev, A.A. Gulamov et al.: Formation of a beam of high optical quality in a multistage neodymium laser, Sov. J. Quant. Electron. 11, 745–749 (1981).

    Article  ADS  Google Scholar 

  53. P. Giacomo, B. Roizen-Dossier, S. Roizen: Préparation, par evaporation sous vide, d’apodiseurs circulaires, J. Phys. (France) 25 (1–2), 285–290 (1964).

    Google Scholar 

  54. C. Dorrer, J.D. Zuegel: Design and analysis of beam apodizers using error diffusion, Optical Society of America, Technical Digest Series, Conf. on Lasers and Electro Optics CLEO 2006, paper JWD1 (2006).

    Google Scholar 

  55. E.S. Bliss, D.R. Speck: Apodized aperture assembly for high-power lasers, U.S. Patent No. 3,867,017, February 18, 1975.

    Google Scholar 

  56. R.L. Nolen, Jr., L.D. Siebert: High-power laser apodizer, U.S. Patent No. 4,017,164, April 12, 1977.

    Google Scholar 

  57. S. Jorna, L.D. Siebert, K.A. Bruekner: Apodizer aperture for lasers, U.S. Patent No. 3,990,786, November 9, 1976.

    Google Scholar 

  58. L.M. Vinogradsky, V.A. Kargin, S.K. Sobolev et al.: Soft diaphragms for apodization of powerful laser beams, Proceed. SPIE 3889, 849–860 (2000).

    Article  ADS  Google Scholar 

  59. Yu.V. Senatsky, N.E. Bykovsky, L.M. Vinogradsky et al.: Apodizers for single-mode lasing, Bull. Russ. Acad. Sci. Phys. 66, 1008–1012 (2002).

    Google Scholar 

  60. L.M. Vinogradsky, S.K. Sobolev, I.G. Zubarev et al.: Development of the nonlinear optical element for light beam apodization and large-aperture laser amplifier decoupling, Proc. SPIE 3683, 186–193 (1998).

    Article  ADS  Google Scholar 

  61. A.D. Tsvetkov, N.I. Potapova, O.S. Shchavelev et al.: Apodized glass aperture with a super-Gaussian transmission function, Zh. Prikl. Spektrosk. (Sov. J. Appl. Spectrosc.) 45, 1022–1025, Minsk (1986).

    Google Scholar 

  62. V.I. Kryzhanovsk˘, B.M. Sedov, V.A. Serebryakov et al.: Formation of the spatial structure of radiation in solid-state laser systems by apodizing and hard apertures, Sov. J. Quant. Electron. 13, 194–198 (1983).

    Article  ADS  Google Scholar 

  63. W. Simmons, B.C. Johnson, A. Glass: Design and potential uses of nonuniform Pockels cells, Laser Program, Annual Report: 1974, 138–142, UCRL-50021-74, LLNL (1975).

    Google Scholar 

  64. W.W. Simmons, G.W. Leppelmier, B.C. Johnson: Optical beam shaping devices using polarization effects, Appl. Opt. 13, 1629–1632 (1974).

    Article  ADS  Google Scholar 

  65. S.B. Paperny˘, V.A. Serebryakov, V.E. Yashin: Formation of a smooth transverse distribution of intensity in a light beam by a phase-rotating plate, Sov. J. Quant. Electron. 8, 1165–1166 (1978).

    Article  ADS  Google Scholar 

  66. G. Giuliani, Y.K. Park, R.L. Byer: Radial birefringent element and its application to laser resonator design, Opt. Lett. 5, 491–493 (1980).

    Article  ADS  Google Scholar 

  67. G. Dube: Total internal reflection apodizers, Opt. Commun. 12, 344–347 (1974).

    Article  ADS  Google Scholar 

  68. J.A. Hoffnagle, C.M. Jefferson: Beam shaping with a plano–aspheric lens pair, Opt. Eng. 42, 3090–3099 (2003).

    Article  ADS  Google Scholar 

  69. J.A. Hoffnagle, C.M. Jefferson: Refractive optical system that converts a laser beam to a collimated flat-top beam, U.S. Patent No. 6,295,168, September 25, 2001.

    Google Scholar 

  70. Y. Asahara, T. Izumitani: Process of producing soft aperture filter, U.S. Patent, No. 4,108,621, August 22, 1978.

    Google Scholar 

  71. M.E. Brodov, F.F. Kamenets, V.V. Korobkin et al.: Controlled-inversion-profile amplifier as soft aperture, Sov. J. Quant. Electron. 9, 224–225 (1979).

    Article  ADS  Google Scholar 

  72. B.J. Feldman, S.J. Gitomer: Annular lens soft aperture for high-power laser systems, Appl. Opt. 15, 1379–1380 (1976).

    Article  ADS  Google Scholar 

  73. N.I. Potapova, A.D. Tsvetkov: Apodization of laser radiation by phase apertures, Sov. J. Quant. Electron. 22, 419–422 (1992).

    Article  ADS  Google Scholar 

  74. M.A. Summers, W.F. Hagen, R.D. Boyd: Scattering apodizer for laser beams, U.S. Patent No. 4,537,475 (1985).

    Google Scholar 

  75. N. Rizvi, D. Rodkiss, C. Panson: Apodizer development, Rutherford Appleton Lab., Annual Rep., The Central Laser Facility CLF-87-041, 113–114 (1987).

    Google Scholar 

  76. M.V. Pyatakhin, Yu.V. Senatsky: Formation of the intensity distribution in laser beams due to diffraction on structures of small size optical inhomogeneities, J. Russian Laser Res. 23 (4), 332–346 (2002).

    Article  Google Scholar 

  77. Yu.V. Senatsky: Laser beam apodization by light scattering, Optical Society of America, Technical Digest Series, Conf. on Lasers and Electro Optics CLEO 2001, Paper CTuM8, p. 160, May 6–11, Baltimore (2001).

    Google Scholar 

  78. Yu. Senatsky: Soft diaphragm for lasers, Russian Patent No. 2,163,386, March 19, 1999.

    Google Scholar 

  79. I. Zubarev, M. Pyatakhin, Yu. Senatsky: Method of soft diaphragm formation, Russian Patent, No. 2,140,695, April 23, 1998.

    Google Scholar 

  80. V.N. Belyaev, N.E. Bykovsk˘, Yu V Senatsk˘ et al.: Formation, by penetrating radiation, of absorbing layers in the optical medium of a neodymium laser, Sov. J. Quant. Electron. 6, 1246–1247 (1976).

    Article  ADS  Google Scholar 

  81. B.G. Gorshkov, V.K. Ivanchenko, V.K. Karpovich et al.: Apodizing induced-absorption apertures with a large optical beam diameter and their application in high-power 1.06 μm laser systems, Sov. J. Quant. Electron. 15, 959–962 (1985).

    Article  ADS  Google Scholar 

  82. V.K. Ivanchenko, S.G. Lukishova, D.M. Margolin et al.: The method of fabrication of apodized apertures, The Soviet Invention Certificate, No. 1,098,409 (1984).

    Google Scholar 

  83. I.K. Krasyuk, S.G. Lukishova, B.M. Terentiev et al.: The method of fabrication of apodized apertures, The Soviet Invention Certificate, No. 1,019,583 (1985).

    Google Scholar 

  84. S.G. Lukishova, N.R. Minhuey Mendez, T.V. Tulaikova: Investigation of a soft aperture formed by photooxidation of a rare-earth impurity in fluorite and used as an intracavity component in a YAG : Er3+ laser, Quant. Electron. 24, 117–119 (1994).

    Article  ADS  Google Scholar 

  85. S.G. Lukishova, A.Z. Obidin, S.Kh. Vartapetov et al.: Photochemical changes of rare-earth valent state in gamma-irradiated CaF2:Pr crystals by the eximer laser radiation: investigation and application, Proceed. SPIE 1503, 338–345 (1991).

    Article  ADS  Google Scholar 

  86. S.G. Lukishova: Some problems of spatial and temporal profile formation of laser radiation, Ph.D Thesis, Moscow Inst. of Phys. & Technology (1977).

    Google Scholar 

  87. S.G. Lukishova, P.P. Pashinin, S.Kh. Batygov et al.: High-power laser beam shaping using apodized apertures, Laser Part. Beams 8 (1–2), 349–360 (1990).

    Article  ADS  Google Scholar 

  88. V.A. Arkhangelskaya, S.Kh. Batygov, S.G. Lukishova et al.: The method of making of amplitude filters, The Soviet Invention Certificate, No. 1,647,044A1 (1990). See also A.S. Shcheulin, T.S. Semenova, L.F. Koryakina et al.: Additive coloration of crystals of calcium and cadmium fluorides, Opt. and Spectrosc. 103, 660–664 (2007).

    Google Scholar 

  89. A.E. Poletimov, A.S. Shcheulin, I.L. Yanovskaya: Apodizing apertures for visible and IR lasers, Sov. J. Quant. Electron. 22, 927–930 (1993).

    Article  ADS  Google Scholar 

  90. V.A. Arkhangelskaya, S.G. Lukishova, A.E. Poletimov et al.: Apodized aperture for high–peak power near infrared and visible lasers without phase shift at the edges, Optical Society of America, Technical Digest Series, Conf. on Lasers and Electro Optics CLEO 92, paper CThQ6 (1992).

    Google Scholar 

  91. S.G. Lukishova, N.E. Bykovsky, A.E. Poletimov, A.S. Scheulin: Apodization by color centres apertures on the Delfin laser, Optical Society of America, Technical Digest Series, Conf. on Lasers and Electro Optics CLEO 94, 8, 135–136 (1994).

    Google Scholar 

  92. J.C. Diels: Apodized aperture using frustrated total reflection, Appl. Opt. 14, 2810–2811 (1975).

    ADS  Google Scholar 

  93. I.K. Krasyuk, S.G. Lukishova, P.P. Pashinin et al.: Formation of the radial distribution of intensity in a laser beam by “soft” apertures, Sov J. Quant. Electron. 6, 725–727 (1976).

    Article  ADS  Google Scholar 

  94. S.G. Lukishova, S.A. Kovtonuk, A.A. Ermakov et al.: Dielectric film deposition with cross-section variable thickness for amplitude filters on the basis of frustrated total internal reflection, SPIE Milestone Series, Selected Papers on Apodization: Coherent Optical Systems, J.P. Mills and B.J. Thomson, (Eds.), MS 119, 447–458 (1996).

    Google Scholar 

  95. J.-C. Lee, S.D. Jacobs, K.J. Skerrett: Laser beam apodizer utilizing gradient–index optical effects in cholesteric liquid crystals, Opt. Eng. 30, 330–336 (1991).

    Article  ADS  Google Scholar 

  96. S.D. Jacobs, L.A. Cerqua: Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths, U.S. Patent, No. 4,679,911, July 14, 1987.

    Google Scholar 

  97. J.-C. Lee, S. Jacobs: Gradient index liquid crystal devices and method of fabrication there of, U.S. Patent, No. 5,061,046, October 29, 1991.

    Google Scholar 

  98. A. Penzkofer, W. Frohlich: Apodizing of intense laser beams with saturable dyes, Opt. Commun. 28, 197–201 (1979).

    Article  ADS  Google Scholar 

  99. D.R. Neil, J.D. Mansell: Apodized micro-lenses for Hartmann wavefront sensing and method for fabricating desired profiles, U.S. Patent No. 6,864,043 (2003).

    Google Scholar 

  100. J.P. Mills, B.J. Thomson, (Eds.): Selected Papers on Apodization: Coherent Optical Systems, SPIE Milestone Series of Selected Reprints MS 119 (1996).

    Google Scholar 

  101. N.B. Baranova, N.E. Bykovsky, Yu.V. Senatsky et al.: Nonlinear processes in the optical medium of a high-power neodymium laser, J. Sov. Laser Res. 1, 53–88 (1980).

    Article  Google Scholar 

  102. N.G. Basov, V.S. Zuev, P.G. Kryukov et al.: Generation and amplification of high-intensity light pulses in neodymium glass, Sov. Phys. JETP 27, 410–414 (1968).

    ADS  Google Scholar 

  103. J.L. Emmet, W.F. Krupke, J.B. Trenholme: Future development of high-power solid-state laser systems, Sov. J. Quant. Electron. 13, 1–23 (1983).

    Article  ADS  Google Scholar 

  104. J.H. Marburger: Self–focusing: theory, Prog. Quant. Electr. 4, 35–110 (1975). See also this volume, Chapter 2 for this reprint

    Article  ADS  Google Scholar 

  105. R.W. Boyd: Nonlinear Optics. Chapter 7: Processes resulting from the intensity-dependent refractive index, pp. 311–370, Academic Press, San Diego (2003).

    Google Scholar 

  106. R. Hellwarth, J. Cherlow, T.-T. Yang: Origin and frequency dependence of nonlinear optical susceptibilities of glasses, Phys. Rev. B 11, 964–967 (1975).

    ADS  Google Scholar 

  107. R. Hellwarth: Third-order optical susceptibilities of liquids and solids, Prog. Quant. Electron. 5, 1–68 (1977).

    Article  ADS  Google Scholar 

  108. G.A. Askar’yan: Effects of the gradient of a strong electromagnetic beam on electrons and atoms, Sov. Phys. JETP 15, 1088–1090 (1962). See also this volume, Chapter 11.1 for this reprint.

    Google Scholar 

  109. M. Hercher: Laser-induced damage in transparent media, J. Opt. Soc. Am. 54, 563 (1964). See also this volume, Chapter 11.3 for this reprint.

    Google Scholar 

  110. N.F. Pilipetskii, A.R. Rustamov: Observation of self–focusing of light in liquids, JETP Lett. 2, 55–56 (1965). See also Chapter 15, Figure 15.1 of this volume.

    Google Scholar 

  111. Y.R. Shen: Self-focusing: experimental, Prog. Quant. Electr. 4, 1–34 (1975).

    Article  ADS  Google Scholar 

  112. Y.R. Shen: The Principles of Nonlinear Optics. Chapter 17: Self-focusing, pp. 303–333 , John Wiley & Sons, New York (1984).

    Google Scholar 

  113. O. Svelto: Self-focusing, self-trapping, and self-phase modulation of laser beams. In: Progress in Optics XII, E. Wolf (Ed.), 3–51, North–Holland, Amsterdam (1974).

    Google Scholar 

  114. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov: Self-focusing and diffraction of light in a nonlinear medium, Sov. Phys. Uspekhi 10, 609–636 (1968).

    Article  ADS  Google Scholar 

  115. S.A. Akhmanov, R.V. Khokhlov, A.P. Sukhorukov: Self-focusing, self-defocusing and self-modulation of laser beams. In: Laser Handbook, vol. 2, E3, 1151–1228, F.T. Arecchi, E.O. Schulz-Dubois (Eds.), North-Holland, Amsterdam (1972).

    Google Scholar 

  116. V.N. Lugovoi, A.M. Prokhorov: Theory of the propagation of high-power laser radiation in a nonlinear medium, Sov. Phys. Uspekhi 16, 658–679 (1974).

    Article  ADS  Google Scholar 

  117. S.N. Vlasov, V.I. Talanov: Wave Self-focusing, Institute of Applied Physics of the Russian Academy of Science, Nizhny Novgorod, 220 pp. (1997).

    Google Scholar 

  118. M.S. Sodha, A.K. Ghatak, V.K. Tripathi: Self-focusing of Laser Beams in Dielectrics, Plasma, and Semiconductors, Tata McGraw-Hill, New Delhi (1974).

    Google Scholar 

  119. V.I. Talanov: Self-focusing of electromagnetic waves in nonlinear media. Izv Vuzov Radiophysica, 7, 564 –565 (1964). See also this volume, Chapter 11.2 for the first English translation of this paper.

    MATH  Google Scholar 

  120. R.Y. Chiao, E. Garmire, C.H. Townes: Self-trapping of optical beams, Phys Rev Lett 13, 479–482 (1964).

    Article  ADS  Google Scholar 

  121. P.L. Kelley: Self-focusing of optical beams, Phys. Rev. Lett. 15, 1005–1008 (1965).

    Article  ADS  Google Scholar 

  122. W.G. Wagner, H.A. Haus, J.H. Marburger: Large-scale self-trapping of optical beams in the paraxial approximation, Phys. Rev. 175, 256–266 (1968).

    Article  ADS  Google Scholar 

  123. Yu.K. Danilejko, T.P. Lebedeva, A.A. Manenkov et al.: Self-focusing of laser beams with various spatial profiles of incident radiation, Sov. Phys. JETP 53, 247–252 (1981).

    MATH  Google Scholar 

  124. A.L. Dyshko, V.N. Lugovoi, A.M. Prokhorov: Self-focusing of intense light beams, JETP Lett. 6, 146–148 (1967).

    ADS  Google Scholar 

  125. A.L. Dyshko, V.N. Lugovoi, A.M. Prokhorov: Multifocus structure of a light beam in a nonlinear medium, Sov. Phys. JETP 34, 1235–1241 (1972).

    ADS  Google Scholar 

  126. T.P. Lebedeva: The effect of the amplitude and phase profile of a laser beam on self-action processes, Ph.D. Thesis, General Physics Institute, Moscow (1984).

    Google Scholar 

  127. A.A. Amosov, N.S. Bakhvalov, Ya.M. Zhileikin et al.: Self-focusing of wave beams with a plateau-shaped intensity distribution, JETP Lett. 30, 108–111 (1979).

    ADS  Google Scholar 

  128. M.D. Feit, J.A. Fleck, Jr.: Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams, J. Opt. Soc. Am. B 5, 633–640 (1988).

    Article  ADS  Google Scholar 

  129. N.I. Lipatov, A.A. Manenkov, A.M. Prokhorov: Standing pattern of self-focusing points of laser radiation in glass, JETP Lett. 11, 300–302 (1970).

    ADS  Google Scholar 

  130. V.V. Korobkin, A.M. Prokhorov, R.V. Serov et al.: Self-focusing filaments as a result of the motion of focal points, JETP Lett. 11, 94–96 (1970).

    ADS  Google Scholar 

  131. V.N. Lugovoi, A.M. Prokhorov: A possible explanation of the small-scale self-focusing filaments, JETP Lett. 7, 117–119 (1968).

    ADS  Google Scholar 

  132. V.V. Korobkin, A.J. Alcock: Self-focusing effects associated with laser-induced air breakdown, Phys. Rev. Lett. 21, 1433–1436 (1968).

    Article  ADS  Google Scholar 

  133. M.M. Loy, Y.R. Shen: Small-scale filaments in liquids and tracks of moving foci, Phys. Rev. Lett. 22, 994–997 (1969).

    Article  ADS  Google Scholar 

  134. G.M. Zverev, E.K. Maldutis, V.A. Pashkov: Development of self-focusing filaments in solid dielectrics, JETP Lett. 9, 61–63 (1969).

    ADS  Google Scholar 

  135. J.H. Marburger: Self-focusing as a pulse sharpening mechanism, IEEE J. Quantum Electron. QE–3, 415–416 (1967).

    Article  ADS  Google Scholar 

  136. G.M. Fraiman: Asymptotic stability of manifold of self-similar solutions in self-focusing, Sov Phys JETP 61, 228–233 (1985).

    MathSciNet  Google Scholar 

  137. K.D. Moll, A.L. Gaeta and G. Fibich: Self–similar optical wave collapse: observation of the Townes profile, Phys. Rev. Lett. 90, 203902 (2003).

    Article  ADS  Google Scholar 

  138. L. Bergé, C. Gouédard, J. Schjodt-Eriksen et al.: Filamentation patterns in Kerr media vs. beam shape robustness, nonlinear saturation and polarization states, Physica D 176, 181–211 (2003).

    Article  MATH  ADS  Google Scholar 

  139. T.D. Grow, A.A. Ishaaya, L.T. Vuong et al.: Collapse dynamic of super-Gaussian beams, Opt. Express 14, 5468–5475 (2006).

    Article  ADS  Google Scholar 

  140. G. Fibich, N. Gavich, X.P. Wang: New singular solutions of the nonlinear Schrödinger equation, Physica D 211, 193–220 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  141. V.I. Talanov: Focusing of light in cubic media, JETP Lett. 11, 199–201 (1970).

    ADS  Google Scholar 

  142. E.S. Bliss, J.T. Hunt, P.A. Renard et al.: Effect of nonlinear propagation on laser focusing properties, IEEE J. Quant. Electron. 12, 402–406 (1976).

    Article  ADS  Google Scholar 

  143. J.T. Hunt, J.A. Glaze, W.W. Simmons et al.: Suppression of self-focusing through low-pass spatial filtering and relay imaging, Appl. Opt. 17, 2053–2057 (1978).

    Article  ADS  Google Scholar 

  144. J.T. Hunt, P.A. Renard, R.G. Nelson: Focusing properties of an aberrated laser beam, Appl. Opt. 15, 1458–1464 (1978).

    Article  ADS  Google Scholar 

  145. E.S. Bliss, J.T. Hunt, P.A. Renard et al.: Whole-beam self-focusing, focal zoom, Laser Program, Annual Report, 1975, UCRL-50021-75, 225–227, LLNL (1976).

    Google Scholar 

  146. A.J. Campillo, R.A. Fisher, R.C. Hyer et al.: Streak camera investigation of the self-focusing onset in glass, Appl. Phys. Lett. 25, 408–410 (1974).

    Article  ADS  Google Scholar 

  147. A.J. Glass: A rational definition of index nonlinearity in self-focusing media. In: Laser-Induced Damage in Optical Materials, A.J. Glass, A.H. Guenther (Eds.), National Bureau of Standards Special Publ. 387, 36–41 (1973).

    Google Scholar 

  148. J. Marburger, R. Jokipii, A.J. Glass et al.: Homogeneity requirements for minimizing self-focusing damage. In: Laser-Induced Damage in Optical Materials, A.J. Glass, A.H. Guenther (Eds.), National Bureau of Standards Special Publ. 387, 49–56 (1973).

    Google Scholar 

  149. B.R. Suydam: Self-focusing of very powerful laser beams. In: Laser-Induced Damage in Optical Materials, A.J. Glass, A.H. Guenther (Eds.), National Bureau of Standards Special Publ. 387, 42–48 (1973).

    Google Scholar 

  150. E.S. Bliss, D.R. Speck, J.F. Holzrichter et al.: Propagation of a high-intensity laser pulse with small-scale intensity modulation, Appl. Phys. Lett. 25, 448–450 (1974).

    Article  ADS  Google Scholar 

  151. J.B. Trenholme: Review of small-signal theory, Laser Program, Annual Report, 1974, UCRL-50021-74, LLNL, 179–191 (1975).

    Google Scholar 

  152. K.A. Bruekner, S. Jorna: Linear instability theory of laser propagation in fluids, Phys. Rev. Lett. 17, 78–81 (1966).

    Article  ADS  Google Scholar 

  153. L.A. Bol’shov, L.M. Degtryaryev, A.N. Dykhne et al.: Numerical investigation of small-scale self-focusing of light pulses in neodymium glass amplifiers, Preprint, the Keldysh Institute of Applied Mathematics, No. 109, 31 pp, Moscow (1979).

    Google Scholar 

  154. B.R. Suydam: Self-focusing of very powerful laser beams II, IEEE J. Quant. Elec. 10, 837– 843 (1974).

    Article  ADS  Google Scholar 

  155. B.R. Suydam: Effect of refractive-index nonlinearity on the optical quality of high-power laser beams, IEEE J. Quant. Elec. 11, 225–230 (1975).

    Article  ADS  Google Scholar 

  156. R. Jokipii, J. Marburger: Homogeniety requirements for minimizing self-focusing damage by strong electromagnetic waves, Appl. Phys. Lett. 23, 696–698 (1973).

    Article  ADS  Google Scholar 

  157. S.C. Abbi, N.C. Kothari: Theory of filament formation in self-focusing media, Phys. Rev. Lett. 43, 1929–1931 (1979).

    Article  ADS  Google Scholar 

  158. S.C. Abbi, N.C. Kothari: Growth of Gaussian instabilities in Gaussian laser beams, J. Appl. Phys. 5, 1385–1387 (1980).

    Article  ADS  Google Scholar 

  159. A.E. Siegman: Small-scale self-focusing effects in tapered optical beams, Memo for File, www.stanford.edu/∼siegman/self_focusing_memo.pdf , 1–13 (2002).

  160. D.T. Attwood, E.S. Bliss, E.L. Pierce et al.: Laser frequency doubling in the presence of small-scale beam breakup, IEEE J. Quant. Elec. 12, 203–204 (1976).

    Article  ADS  Google Scholar 

  161. V.N. Alekseev, A.D. Starikov, A.V. Charukhchev et al.: Enhancement of the brightness of radiation from a high-power phosphate–glass Nd3+ laser by spatial filtering of the beam in an amplifying channel, Sov. J. Quant. Electron. 9, 981–984 (1979).

    Article  ADS  Google Scholar 

  162. D. Strickland, G. Mourou: Compression of amplified chirped optical pulses, Opt. Commun. 56, 219–221 (1985).

    Article  ADS  Google Scholar 

  163. C.N. Danson, P.A. Brummitt, R.J. Clarke et al.: Vulcan petawatt: an ultra-high-intensity interaction facility, Nucl Fusion 44, S239–S249 (2004).

    Article  ADS  Google Scholar 

  164. Y. Kitagawa, H. Fujita, R. Kodama et al.: Prepulse-free petawatt laser for a fast ignitor, IEEE J. Quantum Electron. 40, 281–293 (2004).

    Article  ADS  Google Scholar 

  165. L.J. Waxer, D.N. Maywar, J.H. Kelly et al.: High-energy petawatt capability for the Omega laser, Opt. Photonics News 16, 30–36 (2005).

    Article  ADS  Google Scholar 

  166. M.D. Perry, D. Pennington, B.C. Stuart et al.: Petawatt laser pulses, Opt. Lett. 24, 160–162 (1999).

    Article  ADS  Google Scholar 

  167. M.J. Weber, C.B. Layne, R.A. Saroyan et al.: Low-index fluoride glasses for high-power Nd lasers, Opt. Commun. 18, 171–172 (1975).

    Article  ADS  Google Scholar 

  168. R.H. Lehmberg, J. Reintjes, R.C. Eckardt: Two-photon resonantly enhanced self-defocusing in cross-section vapor at 1.06 μm, Appl. Phys. Lett. 25, 374–376 (1974).

    Article  ADS  Google Scholar 

  169. O.A. Konoplev, D.D. Meyerhofer: Cancelation of B -integral accumulation for CPA lasers, IEEE J. Selected Topics Quant. Electron. 4, 459–469 (1998).

    Article  Google Scholar 

  170. N.E. Bykovskii, Yu.V. Senatskii: Enhancement of the spatial homogeneity of the intensity distribution in high-power laser beams, Preprint of the P.N. Lebedev Physical Institute, No. 15, 9 pp., Moscow (1977).

    Google Scholar 

  171. J.P. Caumes, L. Videau, C. Rouyer: Direct measurement of wave-front distortion induced during second-harmonic generation: application to breakup-integral compensation, Opt Lett 29, 899–901 (2004).

    Article  ADS  Google Scholar 

  172. C.E. Max, W.C. Mead, I.J. Thomson: Mechanics of the plasma spatial filter for high-power lasers, Appl. Phys. Lett. 29, 783–785 (1976).

    Article  ADS  Google Scholar 

  173. B.Ya. Zel’dovich, N.F. Pilipetsky, V.V. Shkunov: Principles of Phase Conjugation, 250 pp, Springer-Verlag, New York (1985).

    Google Scholar 

  174. V.I. Bespalov, G.A. Pasmanik: Nonlinear Optics and Adaptive Systems, Nauka, Moscow, 136 pp (1986).

    Google Scholar 

  175. R.A. Fisher, (Ed.): Optical Phase Conjugation, Academic Press, New York, 636 pp. (1983).

    Google Scholar 

  176. O.Yu. Nosach, V.I. Popovichev, V.V. Ragul’skii: Cancellation of phase distortions in an amplifying medium with a “Brillouin mirror,” JETP Lett. 16, 435–438 (1972).

    ADS  Google Scholar 

  177. A.A. Mak, V.A. Serebryakov, V.E. Yashin: Suppression of self-focusing in spatially incoherent light beams, in J.M. Soures, (Ed.), Selected Papers on High–Power Lasers, SPIE Milestone Series of Selected Reprints MS 43, 460–461 (1991).

    Google Scholar 

  178. H. Maillotte, J. Monneret, A. Barthelemy et al.: Laser beam self-splitting into solitons by optical Kerr nonlinearity, Opt. Commun. 109, 265–271 (1994).

    Article  ADS  Google Scholar 

  179. M. Jain, A.J. Merriam, A. Kasapi et al.: Elimination of optical self-focusing by population trapping, Phys. Rev. Lett. 75, 4385–4388 (1995).

    Article  ADS  Google Scholar 

  180. W.W. Simmons, W.F. Hagen, J.T. Hunt et al.: Performance improvements through image relaying, Laser Program Annual Report, 1976, UCRL-50021-76, Part 2-1.4, pp. 2-19–2-28, LLNL (1977).

    Google Scholar 

  181. W.W. Simmons, J.E. Murray, F. Rainer et al: Design, theory, and performance of a high-intensity spatial filter, Laser Program, Annual Report, 1974, UCRL-50021-74, 169–174, LLNL (1975).

    Google Scholar 

  182. N.N. Rozanov, V.A. Smirnov: Small-scale self-focusing of confined beams, Sov. J. Quant. Electron. 8, 1429–1435 (1978).

    Article  ADS  Google Scholar 

  183. Yu.V. Senatskii: Active elements for high-power neodymium lasers, Sov. J. Quant. Electron. 1, 521–523 (1972).

    Article  ADS  Google Scholar 

  184. M.P. Vanyukov, V.I. Kryzhanovskii, V.A. Serebryakov et al.: Laser systems for the generation of picosecond high-irradiance light pulses, Sov. J. Quant. Electron. 1, 483–488 (1972).

    Article  ADS  Google Scholar 

  185. J.B. Trenholme: Theory of irregularity growth on laser beams, Laser Program, Annual Report, 1975, UCRL-50021-75, 237–242, LLNL (1976).

    Google Scholar 

  186. M. Centurion, M.A. Porter, P.G. Kevrekidis, D. Psaltis: Nonlinearity management in optics: experiment, theory, and simulation, Phys. Rev. Lett. 97, 033903 (2006).

    Article  ADS  Google Scholar 

  187. S.M. Babichenko, N.E. Bykovsky, Yu.V. Senatsky: Laser beam self-focusing in nonlinear medium with local inhomogeneities, Preprint N 14, 17 pp., P.N. Lebedev Physical Institute, Moscow (1981).

    Google Scholar 

  188. S.M. Babichenko, N.E. Bykovski˘, Yu.V. Senatski˘: Feasibility of reducing nonlinear losses in the case of small-scale self-focusing in a piecewise-continuous medium, Sov. J. Quant. Electron. 12, 105–107 (1982).

    Article  ADS  Google Scholar 

  189. N.E. Bykovsky, V.V. Ivanov, Yu.V. Senatsky: Intensity profiles of local perturbations in a laser beam propagating in a nonlinear medium, Proceedings of the P.N. Lebedev Physical Institute 149, 150–161 (1985), Nauka Publ., Moscow.

    Google Scholar 

  190. C.C. Widmayer, D. Milam, S.P. deSzoeke: Nonlinear formation of holographic images of obscurations in laser beams, Appl. Opt. 36, 9342–9347 (1997).

    Article  ADS  Google Scholar 

  191. J.H. Hunt, K.R. Manes, P.A. Renard: Hot images from obscurations, Appl. Opt. 32, 5973–5982 (1993).

    Article  ADS  Google Scholar 

  192. S.N. Vlasov, V.I. Kryzhanovski˘, V.E. Yashin: Use of circularly polarized optical beams to suppress self-focusing instability in a nonlinear cubic medium with repeaters, Sov. J. Quant. Electron. 12, 7–10 (1982).

    Article  ADS  Google Scholar 

  193. W. Seka, J. Soures, O. Lewis et al.: High-power phosphate–glass laser system: design and performance characteristics, Appl. Opt. 19, 409–419 (1980).

    Article  ADS  Google Scholar 

  194. D. Auric, A. Labadens: On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier, Opt. Commun. 21, 241–242 (1977).

    Article  ADS  Google Scholar 

  195. G. Fibich, B. Ilan: Self-focusing of circularly polarized beams, Phys. Rev. E 67, 036622 (2003).

    Article  ADS  Google Scholar 

  196. H.T. Powell, T.J. Kessler, (Eds.): Laser Coherence Control: Technology and Applications, Proc. SPIE 1870, 200 pp (1993).

    Google Scholar 

  197. I.V. Alexandrova, N.G. Basov, A.E. Danilov et al.: The effects of small-scale perturbations on the brightness of laser radiation in laser fusion experiments, Laser Part. Beams 1, pt. 3, 241–250 (1983).

    Article  ADS  Google Scholar 

  198. A.E. Danilov, V.V. Orlov, S.M. Savchenko et al.: Investigation of the influence of the spectral composition of radiation on amplification in a neodymium glass, Sov. J. Quant. Electron. 15, 139–140 (1985).

    Article  ADS  Google Scholar 

  199. R.H. Lehmberg, S.P. Obenschain: Use of induced spatial incoherence for uniform illumination of laser fusion targets, Opt. Commun. 46, 27–31 (1983).

    Article  ADS  Google Scholar 

  200. R.H. Lehmberg, A.J. Schmidt, S.E. Bodner: Theory of induced spatial incoherence, J. Appl. Phys. 62, 2680–2701 (1987).

    Article  ADS  Google Scholar 

  201. A.E. Danilov, V.V. Orlov, S.M. Savchenko et al.: Investigation of the effect of the spatial coherence of laser radiation on the brightness properties of high-power neodymium glass lasers, Preprint No. 136, 13 pp, P.N. Lebedev Physical Institute, Moscow (1985).

    MATH  Google Scholar 

  202. D. Veron, G. Thiell, C. Gouedard: Optical smoothing of the high power PHEBUS Nd–glass laser using the multimode optical fiber technique, Opt. Commun. 97, 259–271 (1993).

    Article  ADS  Google Scholar 

  203. S. Skupsky, R.W. Short, T. Kessler et al.: Improved laser beam uniformity using the angular dispersion of frequency-modulated light, J. Appl. Phys. 66, 3456–3462 (1989).

    Article  ADS  Google Scholar 

  204. S.I. Fedotov, L.P. Feoktistov, M.V. Osipov et al.: Laser for ICF with a controllable function of mutual coherence of radiation, J. Sov. Laser Res. 25, 79–92 (2004).

    Article  Google Scholar 

  205. A.N. Starodub, S.I. Fedotov, Yu.V. Korobkin et al.: Nonlinear conversion of laser radiation with controllable coherence into second harmonic, Book of Abstracts of the 29th ECLIM, Madrid, June 11–16, 274 (2006).

    Google Scholar 

  206. A.N. Starodub, S.I. Fedotov, Yu.V. Korobkin et al.: Coherence of laser radiation and laser–matter interaction, Book of Abstracts of the 29th ECLIM, Madrid, June 11–16, 200 (2006).

    Google Scholar 

  207. J. Garnier, L. Videau, C. Gouédard et al.: Propagation and amplification of incoherent pulses in dispersive and nonlinear media, J. Opt. Soc. Am. B 15, 2773–2781 (1998).

    Article  ADS  Google Scholar 

  208. P. Donnat, C. Gouedard, D. Veron et al.: Induced spatial incoherence and nonlinear effects in Nd:glass amplifiers, Opt. Lett. 17, 331–333 (1992).

    Article  ADS  Google Scholar 

  209. H.T. Powell: Broadband development for Nova, LLE/LLNL Workshop Laser Science and ICF Target Science Collaborative Research, 16–17 June 1992, Rochester, NY.

    Google Scholar 

  210. P.W. McKenty, J.H. Kelly, R.W. Short et al.: Self-focusing of broad bandwidth laser light, LLE/LLNL Workshop Laser Science and ICF Target Science Collaborative Research, 16–17 June 1992, Rochester, NY.

    Google Scholar 

  211. M.V. Pyatakhin, A.F. Suchkov: Spatiotemporal Characteristics of Laser Emission, Nova Science Publishers, New York, 203 pp (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lukishova, S.G., Senatsky, Y.V., Bykovsky, N.E., Scheulin, A.S. (2009). Beam Shaping and Suppression of Self-focusing in High-Peak-Power Nd:Glass Laser Systems. In: Boyd, R.W., Lukishova, S.G., Shen, Y. (eds) Self-focusing: Past and Present. Topics in Applied Physics, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34727-1_8

Download citation

Publish with us

Policies and ethics