Skip to main content

Catalysis by Metal and Oxide Nanoparticles, Single Metal Atoms and Di-Nuclear Oxo-Ions in Zeolites

  • Chapter
Nanotechnology in Catalysis

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Nanoparticles of precious metals have been routinely used in heterogeneous catalysis for more than half a century. Zeolites with a well-defined regular network of nanopores and nanocages were introduced by the Mobil company in 19641 because their superior acidity enables them to better catalyze hydrocarbon conversions involving carbenium ion intermediates, such as isomerization, dehydrocyclyzation, and cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Heinemann, Development of industrial catalysis, Handbook of Catalysis, edited by B. G. Ertl, H. Knözinger, and J. Weitkamp (Verlag Chemie, Weinheim) 1997, vol. 1, p. 35.

    Google Scholar 

  2. S. R. Blaszlowski and R. A. van Santen, Quantum chemical studies of zeolite proton catalyzed reactions, Top. Catal. 4, 145–156 (1997).

    Article  Google Scholar 

  3. S. M. Csicsery, Shape selective catalysis in zeolites, Zeolites 4, 202–213 (1984).

    Article  CAS  Google Scholar 

  4. J. Jia, K. S. Pillai, and W. M. H. Sachtler, One-step oxidation of benzene to phenol with nitrous oxide over Fe/MFI catalysts, J. Catal. 221, 119–126 (2004).

    Article  CAS  Google Scholar 

  5. C. Remsberg and H. Higdon, Ideas for rent (UOP, Des Plaines, IL) (Publ) p. 259 (1994).

    Google Scholar 

  6. I. N. Stranski and R. Kaischew, Gleichgewichtsform und Wachstumsform der Kristalle, Ann. Phys. 21, 330 (1935).

    Article  Google Scholar 

  7. I. N. Stranski, Zur Berechnung der spezifischen Oberflächen-, Kanten-, und Eckenenergien an kleinen Kristallen, Monatshefte Chem. 69, 234 (1936).

    Article  CAS  Google Scholar 

  8. I. N. Stranski and R. Kaischew, Kristallwachstum und Kristallkeimbildung, Phys. Z.eitschr. 36. 393 (1936).

    Google Scholar 

  9. A. A. Balandin, Structural and energy factors in the theory of catalyst selection, Sci. Select. Catal. (1968).

    Google Scholar 

  10. J. Fahrenfort, L. L. van Reijen, and W. M. H. Sachtler, The decomposition of HCOOH on metal catalysts, The Mechanism of Heterogeneous. Catalysis (Elsevier, Amsterdam) pp. 23–48 (1960).

    Google Scholar 

  11. W. M. H. Sachtler and J. F. Fahrenfort, Catalytic decomposition of HCOOH vapour on metals, Actes du 2ième Congrès Intern. de Catalyse 1960, (Editions Technip., Paris) pp. 831–863 (1961).

    Google Scholar 

  12. M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides, CatTech 6, 102 (2002).

    Article  CAS  Google Scholar 

  13. A. A. Holscher and W. M. H. Sachtler, Chemisorption and surface corrosion in the tungsten + carbon monoxide system, as studied by field emission and field on microscopy, Dis. Faraday Soc. 41, 29 (1966).

    Article  Google Scholar 

  14. H. Topsøe, N. Topsøe, H. Bohlbro, and J. A. Dumesic, Supported iron catalysts: Particle size dependence of catalytic and chemisorptive properties, Proc. 7th Int. Congress Catalysis, edited by T. Seyama, K. Tanabe (Kondansha, Tokyo), p. 247 (1981).

    Google Scholar 

  15. S. M. Augustine and W. M. H. Sachtler, Catalytic probe for alloy formation in supported PtRe catalysts, J. Catal. 106, 417–427 (1987).

    Article  CAS  Google Scholar 

  16. S. M. Augustine and W. M. H. Sachtler, Variation of catalytic activity over PtRe/Al2O3, J. Phys. Chem. 91, 5935–5956 (1987).

    Article  Google Scholar 

  17. S. M. Augustine and W. M. H. Sachtler, On the mechanism for the platinum catalyzed reduction of rhenium in PtRe/γ-Al2O3, J. Catal. 116, 184–194 (1989).

    Article  CAS  Google Scholar 

  18. C. M. Tsang, S. M. Augustine, J. B. Butt, and W. M. H. Sachtler, Synthesis and characterization of bimetallic PtRex clusters prepared by sublimation of Re2(CO)10 onto Pt/NaY, Appl. Catal. 46, 45–56 (1989).

    Article  CAS  Google Scholar 

  19. Y. Z. Zhang, T. T. Wong, and W. M. H. Sachtler, The effect of Ca2+ and Mg2+ ions on the formation of electron-deficient palladium-proton adducts in zeolite, J. Catal. 128, 13–22 (1991).

    Article  CAS  Google Scholar 

  20. X. L. Bai and W. M. H. Sachtler, Methylcyclopentane conversion catalysis by zeolite encaged palladium clusters and palladium-proton adducts, J. Catal. 129, 121–129 (1991).

    Article  CAS  Google Scholar 

  21. T. J. McCarthy, G.-D. Lei, and W. M. H. Sachtler, Methylcyclopentane conversion catalysis over zeolite Y encaged rhodium; a test for the metal-proton adduct model, J. Catal. 159, 90–98 (1996).

    Article  CAS  Google Scholar 

  22. Z. C. Zhang, J. Hare, and B. Beard, Basicity of nanosized noble metal clusters in catalysis, 13th Int. Congr. Catalysis, Paris Abstract, 2-017 (2004).

    Google Scholar 

  23. Y. Z. Zhang, T. T. Wong, and W. M. H. Sachtler, The effect of Ca2+ and Mg2+ ions on the formation of electron-deficient palladium-proton adducts in zeolite, J. Catal. 128, 13–22 (1991).

    Article  CAS  Google Scholar 

  24. X. L. Bai and W. M. H. Sachtler, Methylcyclopentane conversion catalysis by zeolite encaged palladium clusters and palladium-proton adducts, J. Catal. 129, 121–129 (1991).

    Article  CAS  Google Scholar 

  25. T. J. McCarthy, G.-D. Lei, and W. M. H. Sachtler, Methylcyclopentane conversion catalysis over zeolite Y encaged fhodium; a test for the metal-proton adduct model, J. Catal. 159, 90–98 (1996).

    Article  CAS  Google Scholar 

  26. W. M. H. Sachtler and Z. Zhang, Zeolite supported transition metal catalysts, Adv. Catal. 39, 129–220 (1993).

    Article  CAS  Google Scholar 

  27. F. C. Gault, J. J. Rooney, and C. Kemball, Catalytic exchange with deuterium of polymethyl-cyclopentanes on metal films: Evidence for π-bonded intermediates, J. Catal. 1, 225 (1962).

    Article  Google Scholar 

  28. C. Kemball, The catalytic exchange of hydrocarbons with deuterium, Adv. Catal. 11, 233 (1970).

    Google Scholar 

  29. R. L. Burwell, Jr., Use of deuterium on the study of heterogeneous catalysis, Catal. Rev. 7, 25 (1972).

    Article  CAS  Google Scholar 

  30. G.-D. Lei and W. M. H. Sachtler, H/D exchange of cyclopentane on Pt/mordenites: Probing for monoatomic Pt sites, J. Catal. 140, 601–611 (1993).

    Article  CAS  Google Scholar 

  31. P. Mars and D. W. van Krevelen, Oxidations carried out by means of vanadium oxide catalysts, Chem. Eng. Sci. (Special Suppl.) 3, 41 (1954).

    CAS  Google Scholar 

  32. H.-Y. Chen, X. Wang, and W. M. H. Sachtler, Reduction of NOx over zeolite MFI supported iron catalysts: Nature of active sites, Phys. Chem., Chem. Phys. 2, 3083–3090 (2000).

    Article  CAS  Google Scholar 

  33. W. M. H. Sachtler, G. J. H. Dorgelo, J. Fahrenfort, and R. J. H. Voorhoeve, Correlations between catalytic and thermodynamic parameters of transition metal oxides, Proceedings 4th Int. Congress Catalysis, Moscow, 1968 (Akad. Kiado, Budapest) vol 1971, pp. 454–465.

    Google Scholar 

  34. H.-Y. Chen, X. Wang, and W. M. H. Sachtler, Reduction of NOx over zeolite MFI supported iron catalysts: nature of active sites, Phys. Chem., Chem. Phys. 2, 3083–3090 (2000).

    Article  CAS  Google Scholar 

  35. J. Sárkány and W. M. H. Sachtler, Redox chemistry of Cu/Na-ZSM-5; detection of cuprous ions by FTIR, Zeolites 14, 7 (1994).

    Article  Google Scholar 

  36. M. Iwamoto, K. Matsukami, and S. Kagawa, Catalytic oxidation by oxide radical ions. 1. One-step hydroxylation of benzene to phenol over group 5 or 6 oxides supported on silica gel, J. Phys. Chem. 87, 903 (1983).

    Article  CAS  Google Scholar 

  37. G. I. Panov, A. S. Kharitonov, and V. I. Sobolev, Oxidative hydroxylation using dinitrogen monoxide: a possible route for organic synthesis over zeolites, Appl. Catal. A 98, 1 (1992).

    Google Scholar 

  38. G. I. Panov, A. K. Uriarte, M. A. Rodkin, and V. I. Sobolev, Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites, Catal. Today 41, 365 (1998).

    Article  CAS  Google Scholar 

  39. J. Jia, K. S. Pillai, and W. M. H. Sachtler, One-step oxidation of benzene to phenol with nitrous oxide over Fe/MFI catalysts, J. Catal. 221, 119–126 (2004).

    Article  CAS  Google Scholar 

  40. Q. Zhu, R. M. van Teeffelen, R. A van Santen, and E. J. M. Hensen, Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3: II. Nitrous oxide decomposition, selective oxidation of benzene to phenol, selective reduction of nitrous oxide by iso-butane, J. Catal. 221, 575–583 (2004)

    Article  CAS  Google Scholar 

  41. R. Brill, E.-L. Richter, and E. Ruch, Adsorption of nitrogen on iron, Angew. Chem. Int. Ed. 6, 882–883 (1967).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sachtler, W.M. (2007). Catalysis by Metal and Oxide Nanoparticles, Single Metal Atoms and Di-Nuclear Oxo-Ions in Zeolites. In: Zhou, B., Han, S., Raja, R., Somorjai, G.A. (eds) Nanotechnology in Catalysis. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34688-5_9

Download citation

Publish with us

Policies and ethics