Skip to main content

Nanotechnology and Heterogeneous Catalysis

  • Chapter
Nanotechnology in Catalysis

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Worldwide in the past decade, nanoscience and nanotechnology has become a popular field for research and development. As an example to explain its potential significance, heterogeneous catalysis was cited as a successful application that has great benefits for society. Thus, it is reasonable to expect that the explosion in new developments in nanoscience and nanotechnologywould have a significant impact on the understanding, practice, and applications of catalysis. In this paper, a brief account is presented using selected examples to illustrate ways that these recent developments have advanced heterogeneous catalysis, both in terms of better control of heterogeneous catalytic processes, and of applying catalysis to developments in nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.nano.gov/html/facts/whatIsNano.html, December 30, 2004.

    Google Scholar 

  2. F. Zaera, A. J. Gellman, and G. A. Somorjai, Surface science studies of catalysis: classification of reactions, Acc. Chem. Res. 19, 24 (1986).

    Article  CAS  Google Scholar 

  3. R. M. Crooks, M. Zhao, L. Sun, V. Chechik, and L. K. Yeung, Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis, Acc. Chem. Res. 34, 181 (2001).

    Article  CAS  Google Scholar 

  4. M. Zhao, L. Sun, and R. M. Crooks, Preparation of Cu nanoclusters within dendrimer templates, J. Am. Chem. Soc. 120, 4877 (1998).

    Article  CAS  Google Scholar 

  5. H. Lang, R. A. May, B. L. Iverson, and B. D. Chandler, Dendrimer-encapsulated nanoparticle precursors to supported platinum catalysts, J. Am. Chem. Soc. 125, 14832 (2003).

    Article  CAS  Google Scholar 

  6. A. J. Zarur, and J. Y. Ying, Nature 403, 65 (2000).

    Article  CAS  Google Scholar 

  7. A. I. Kozlov, M. C. Kung, W. M. Xue, and H. H. Kung, A “soft-chemical” method to synthesize Lewis acid surfaces of aluminum oxide, Angew. Chem. Int. Ed. 42, 2415 (2003).

    Article  CAS  Google Scholar 

  8. W. M. Xue, M. C. Kung, A. I. Kozlov, K. E. Popp, and H. H. Kung, Catalytic aminolysis of epoxide by alumina prepared from amine-protected Al precursor, Catal. Today 85(24), 219 (2003).

    Article  CAS  Google Scholar 

  9. M. C. Klunduk, T. Maschmeyer, J. M. Thomas, and B. F. G. Johnson, The influence of steric congestion on the catalytic performance of TiIV active centers in the epoxidation of alkenes, Chem. Eur. J. 5, 1481 (1999).

    Article  CAS  Google Scholar 

  10. M. D. Jones, R. Raja, J. M. Thomas, B. F. G. Johnson, D. W. Lewis, J. R. Kenneth, and D. M. Harris, Enhancing the enantioselectivity of novel homogeneous organometallic hydrogenation catalysts, Angew. Chem. Int. Ed. 42, 4326 (2003).

    Article  CAS  Google Scholar 

  11. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114, 10834 (1992).

    Article  CAS  Google Scholar 

  12. J. M. Thomas, R. Raja, G. Sankar, and R. G. Bell, Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen, Nature 398, 227 (1999); J. M. Thomas, Designing a molecular sieve catalyst for the aerial oxidation of n-hexane to adipic acid, Angew. Chem. Int. Ed. 39, 2313 (2000).

    Article  CAS  Google Scholar 

  13. W. M. Xue, M. C. Kung, and H. H. Kung, Rational synthesis of asymmetric bicyclic siloxane, Chem. Commun. 2164 (2005). ([AQ] Author: Please provide volume number in references [13], [14].)

    Google Scholar 

  14. Z. Chang, M. C. Kung, and H. H. Kung, Stepwise synthesis of siloxane chains, Chem. Commun. 206 (2004).

    Google Scholar 

  15. G. Huysmans, A. Ranquin, L. Wyns, J. Steyaert, and P. Van Gelder, Encapsulation of therapeutic nucleoside hydrolase in functionalised nanocapsules, J. Control. Rel. 102, 171 (2005).

    Article  CAS  Google Scholar 

  16. S. Okada, S. Peng, W. Spevak, and D. Charych, Color and chromism of polydiacetylene vesicles, Acc. Chem. Res. 31, 229 (1998).

    Article  CAS  Google Scholar 

  17. E. T. Kisak, B. Coldren, and J. A. Zasadzinski, Nanocompartments enclosing vesicles, colloids, and macromolecules via interdigitated lipid bilayers, Langmuir 18, 284 (2002).

    Article  CAS  Google Scholar 

  18. F. Li, L. Zhang, and R. M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide, Chem. Mater. 10, 2470 (1998).

    Article  CAS  Google Scholar 

  19. J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition, Chem. Mater. 15, 3507 (2003).

    Article  CAS  Google Scholar 

  20. M. K. Singh, E. Titus, P. K. Tyagi, U. Palnitkar, D. S. Misra, M. Roy, A. K. Dua, C. S. Cojocaru, and F. Le Normand, Ni and Ni/Pt filling inside multiwalled carbon nanotubes, J. Nanosci. Nanotechnol. 3, 165 (2003).

    Article  CAS  Google Scholar 

  21. B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, Aligned multiwalled carbon nanotube membranes, Science 303, 62 (2004).

    Article  CAS  Google Scholar 

  22. T. Shimoboji, E. Larenas, T. Fowler, A. S. Hoffman, and P. S. Stayton, Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates, Bioconjugate Chem. 14 (3), 517 (2003).

    Article  CAS  Google Scholar 

  23. H. Dai, Carbon nanotubes: Synthesis, integration, and properties, Acc. Chem. Res. 35, 1035 (2002).

    Article  CAS  Google Scholar 

  24. S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, Narrow (n, m),-distribution of single-walled carbon nanotubes grown using a solid supported catalyst, J. Am. Chem. Soc. 125, 11186 (2003).

    Article  CAS  Google Scholar 

  25. B. Chen, G. Parker II, J. Han, M. Meyyappan, and A. M. Cassell, Heterogeneous single-walled carbon nanotube catalyst discovery and optimization, Chem. Mater. 14, 1891 (2002).

    Article  CAS  Google Scholar 

  26. W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. Lammert, and V. H. Crespi, Catalytic nanomotors: autonomous movement of striped nanorods, J. Am. Chem. Soc. 126, 13424 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Kung, H.H., Kung, M.C. (2007). Nanotechnology and Heterogeneous Catalysis. In: Zhou, B., Han, S., Raja, R., Somorjai, G.A. (eds) Nanotechnology in Catalysis. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34688-5_1

Download citation

Publish with us

Policies and ethics