Skip to main content

Hydrogen Separation Using Dense Composite Membranes: Part 1 Fundamentals

  • Chapter
Inorganic Membranes for Energy and Environmental Applications

Abstract

This chapter reviews some fundamental science critical for the understanding, development and operation of many classes of dense composite inorganic membrane used for transport of hydrogen. A companion paper follows in this volume discussing some of the engineering issues of membrane scale-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Snelling, Walter O. Apparatus for Separating Gases. US Patent 1,174,631, 7 March 1916.

    Google Scholar 

  2. Paglieri, S. N, Way, J. D. Innovations in palladium membrane research. Separation and Purification Methods 2002;31(1):1–169, and references therein.

    Article  CAS  Google Scholar 

  3. Paglieri, S. N. Palladium membranes. In: Sammells, A. F, Mundschau, M. V, editors. Nonporous inorganic membranes. Weinheim, Germany: Wiley-VCH; 2006. pp. 77–105, and references therein.

    Chapter  Google Scholar 

  4. Makrides, Alkis C, Wright, Maurice A, Jewett, David N. Separation of Hydrogen by Permeation. US Patent 3,350,846, 7 Nov 1967.

    Google Scholar 

  5. Buxbaum, Robert E, Kinney, Andrew B. Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium. Ind Eng Chem Res. 1996;35:530–7.

    Google Scholar 

  6. Buxbaum, Robert E, Hsu, Peter C. Method for Plating Palladium. US Patent 5,149,420, 22 Sep 1992.

    Google Scholar 

  7. Hill, Eugene F. Hydrogen Separation Using Coated Titanium Alloys. US Patent 4,468,235, 28 Aug 28, 1984.

    Google Scholar 

  8. Mundschau, Michael V, Xie, Xiaobing, Evenson IV Carl R. Superpermeable hydrogen transport membranes. In: Sammells, A. F, Mundschau, M. V, editors. Nonporous inorganic membranes. Weinheim, Germany: Wiley-VCH; 2006. pp. 107–38, and references therein.

    Google Scholar 

  9. Phair, John W, Donelson, Richard. Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation. Ind Eng Chem Res. 2006;45:5657–74, and references therein.

    Google Scholar 

  10. Dorris, Stephen E, Lee, Tae H, Balachandran, Uthamalingam. Metal/Ceramic Composites with High Hydrogen Permeability. US Patent 6,569,226 B1, 27 May 2003.

    Google Scholar 

  11. Mundschau, Michael V, Xie, Xiaobing, Sammells, Anthony F. Hydrogen transport membrane technology for simultaneous carbon dioxide capture and hydrogen separation in a membrane shift reactor. In: Thomas, D. C, Benson, S. M, editors. Carbon dioxide capture for storage in deep geologic formations. Vol. 1. Amsterdam: Elsevier; 2005. pp. 291–306.

    Chapter  Google Scholar 

  12. Mundschau, Michael V. Hydrogen Transport Membranes. US Patent 6,899,744 B2, 31 May 2005.

    Google Scholar 

  13. Norby, T, Haugsrud, R. Dense ceramic membranes for hydrogen separation. In: Sammells, A. F, Mundschau, M. V, editors. Nonporous inorganic membranes. Weinheim Germany: Wiley-VCH; 2006. pp. 1–48.

    Chapter  Google Scholar 

  14. Gupta, V. K, Lin, Y. S. Ceramic proton conductors. In: Sammells, A. F, Mundschau, M. V, editors, Nonporous inorganic membranes. Weinheim Germany: Wiley-VCH;. 2006. pp. 49–76.

    Chapter  Google Scholar 

  15. Steward, S. A. Review of hydrogen isotope permeability through materials. Lawrence Livermore National Laboratory Report UCRL-53441; DE84 007362, Available from: National Technical Information Service, US Department of Commerce, Springfield, VA, USA, 1984.

    Google Scholar 

  16. Buxbaum, Robert E, Marker, Terry L. Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium. J Membr Sci. 1993;85:29–38.

    Article  CAS  Google Scholar 

  17. Peachey, N. M, Snow, R. C, Dye, R. C. Composite Pd/Ta metal membranes for hydrogen separation. J Membr Sci. 1996;111:123–33.

    Article  CAS  Google Scholar 

  18. Buxbaum, R. E, Subramanian, R, Park, J. H, Smith, D. L. Hydrogen transport and embrittlement for palladium coated vanadium-chromium-titanium alloys. J Nucl Mater. 1996; 233–237:510–2.

    Article  Google Scholar 

  19. Ozaki, T, Zhang, Y, Komaki, M, Nishimura, C. Preparation of palladium-coated V and V-15Ni membranes for hydrogen purification by electroless plating technique. Int J Hydrogen Energy. 2002;28:297–302.

    Article  Google Scholar 

  20. Uthamalingam B. Argonne National Laboratory private communication. Seminar presented at Eltron Research, Feb 2007.

    Google Scholar 

  21. Nishimura, C, Ozaki, T, Komaki, M, Zhang, Y. Hydrogen permeation and transmission electron microscope observations of V-Al alloys. J Alloys Compd. 2003;356–357:295–9.

    Article  Google Scholar 

  22. Ozaki, Tetsuya, Zhang, Yi, Komaki, Masao, Nishimura, Chikashi. Hydrogen Permeation Characteristics of V-Ni-Al alloys. Int J Hydrogen Energy. 2003;28:1229–35.

    Article  CAS  Google Scholar 

  23. Balachandran, Uthamalingam. Argonne National Laboratory, private communication; seminar presented at Eltron Research, Feb 2007.

    Google Scholar 

  24. Moss, T. S, Peachey, N. M, Snow, R. C, Dye, R. C. Multilayer metal membranes for hydrogen separation. Int J Hydrogen Energy. 1998;23:99–106.

    Article  CAS  Google Scholar 

  25. Rothenberger, K. S, Howard, B. H, Killmeyer, R. P, Cugini, A. V, Enick, R. M, Bustamante F, et al. Evaluation of tantalum-based materials for hydrogen separation at elevated temperatures and pressures. J Membr Sci. 2003;218:19–37.

    Article  CAS  Google Scholar 

  26. Askeland, Donald R. The science and engineering of materials. 3rd ed. Boston: PWS Publishing; 1994.

    Google Scholar 

  27. Wipf, H. Diffusion of hydrogen in metals. In: Wipf, H, editor. Hydrogen in metals III, Topics in applied physics. Vol. 73. Berlin: Springer; 1997. pp. 51–91.

    Google Scholar 

  28. Smithells, Colin J. Gases and metals. New York: Wiley; 1937.

    Google Scholar 

  29. Peachey, N. M, Snow, R. C, Dye, R. C. Composite Pd/Ta metal membranes for hydrogen separation. J Membr Sci. 1996;111:123–33.

    Article  CAS  Google Scholar 

  30. Katz, O. M, Gulbransen, E. A. Occluded gases in transition metals. In: Mandelcorn, L, editor. Non-stoichiometric compounds. New York: Academic Press; 1964. p. 244.

    Google Scholar 

  31. Mackay, K. M. Hydrogen compounds of the metallic elements. London: E & F N. Spon; 1966.

    Google Scholar 

  32. Hunter, James B. Silver-Palladium Film for Separation and Purification of Hydrogen. US Patent 2,773,561, 11 Dec 1956.

    Google Scholar 

  33. McKinley, David L. Method for Hydrogen Separation and Purification. US Patent 3,247,648, 6 Dec 1966.

    Google Scholar 

  34. McKinley, David L. Metal Alloy for Hydrogen Separation and Purification. US Patent 3,350,845, 7 Nov 1967.

    Google Scholar 

  35. McKinley, David L. Method for Hydrogen Separation and Purification. US Patent 3,439,474, 22 April 1969.

    Google Scholar 

  36. Savitsky, E, Polyakova, V, Gorina, N, Roshan, N. Physical metallurgy of platinum metals. Moscow: Mir; 1978.

    Google Scholar 

  37. Donnay, J. D. H, Donnay, Gabrielle, Cox, E. G, Kennard, Olga, King, Murray Vernon, editors. Crystal data determinative tables. 2nd ed. Washington DC: American Crystallographic Association; 1963.

    Google Scholar 

  38. Clark, George L. Applied X-rays, 4th ed. New York: McGraw Hill; 1955. p. 558.

    Google Scholar 

  39. Züchner Harald. Ewald Wicke and his work on metal-hydrogen systems. J Alloys Compd. {2002;330–332:2–7}, and references therein.

    Article  Google Scholar 

  40. Darling, Alan Sydney. Treatment of Hydrogen or Gaseous Mixtures Containing Hydrogen. US Patent 2,962,123, 29 Nov 1960.

    Google Scholar 

  41. Hansen, M. Constitution of binary alloys. New York: McGraw-Hill; 1958. p. 353.

    Google Scholar 

  42. Smith, J. F. Peterson, D. T (Hydrogen-Vanadium). In: Smith, J. F, editor. Phase diagrams of binary vanadium alloys. Metals Park, OH: ASM International; 1989.

    Google Scholar 

  43. Nishimura, Chikashi, Komaki, Masao, Amano, Muneyuki. Hydrogen permeation characteristics of vanadium-nickel alloys. Mater Trans JIM. 1991;32(5):501–7.

    CAS  Google Scholar 

  44. Nishimura, C, Komaki, M, Amano, M. Hydrogen permeation characteristics of vanadium-molybdenum alloys. Trans Mat Res Soc Jpn. 1994;18B:1273–6.

    CAS  Google Scholar 

  45. Zhang, Y, Ozaki, T, Komaki, M, Nishimura, C. Hydrogen permeation characteristics of vanadium-aluminum alloys. Scr Mater. 2002;47:601–6.

    Article  CAS  Google Scholar 

  46. Rostoker, W. The metallurgy of vanadium. New York: Wiley; 1958.

    Google Scholar 

  47. Adamson, Arthur W. Physical chemistry of surfaces. 2nd ed. New York: Interscience; 1967.

    Google Scholar 

  48. Adam, Neil K. The physics and chemistry of surfaces. 3rd ed. Oxford: London; 1941.

    Google Scholar 

  49. Suganuma, K, Miyamoto, Y, Koizumi, M. Joining of ceramics and metals. In: Huggins, R. A, editor. Annual review of materials science. Palo Alto, CA: Annual Reviews, Inc.; 1988. pp. 47–73.

    Google Scholar 

  50. van der Merwe, J. H. Recent developments in the theory of epitaxy. In: Vanselow, R, Howe, R, editors. Chemistry and physics of solid surfaces V. Berlin: Springer; 1984. pp. 365–401.

    Google Scholar 

  51. Mundschau, M. V, Xie, X, Evenson IV, C. R, Sammells, A. F. Dense inorganic membranes for production of hydrogen from methane and coal with carbon dioxide sequestration. Catal Today. 2006;118:12–23.

    Article  CAS  Google Scholar 

  52. Peachey, Nathaniel M, Dye, Robert C, Snow, Ronny C, Birdsell, Stephan A. Composite Metal Membrane. US Patent 5,738,708, 14 April 1998.

    Google Scholar 

  53. Brailsford, F. Ferromagnetic theory. In: Say, M. G, editor. Magnetic alloys and ferrites. London: George Newnes Ltd; 1954. pp. 1–36.

    Google Scholar 

  54. Chen, Chih-Wen. Magnetism and metallurgy of soft magnetic material. New York: Dover; 1986. p. 302.

    Google Scholar 

  55. Zhang, Y, Ozaki, T, Komaki, M, Nishimura, C. Hydrogen permeation characteristics of V-15Ni membrane with Pd/Ag overlayer by sputtering. J Alloys Compd. 2003;356–357:553–6.

    Article  Google Scholar 

  56. Zhang, Y, Ozaki, T, Komaki, M, Nishimura, C. Hydrogen permeation of Pd-Ag coated V-15Ni composite membrane: effects of overlayer composition. J Membr Sci. 2003;224:81–91.

    Article  CAS  Google Scholar 

  57. Zhang, Y, Komaki, M, Nishimura, C. Morphological study of supported thin Pd and Pd-25Ag membranes upon hydrogen permeation. J Membr Sci. 2005;246:173–80.

    Google Scholar 

  58. Yang, J. Y, Nishimura, C, Komaki, M. Effect of overlayer composition on hydrogen permeation of Pd-Cu alloy coated V-15Ni composite membrane. J Membr Sci. 2006;282:337–41.

    Article  CAS  Google Scholar 

  59. Yang, J. Y, Komaki, M, Nishimura, C. Effect of overlayer thickness on hydrogen permeation of Pd60Cu40/V-15Ni composite membranes. Int J Hydrogen Energy. 2007. doi. 10.1016/j.ijhydene.2006.12.015.

    Google Scholar 

  60. Paglieri, S. N, Pesiri, D. R, Dye, R. C, Tewell, C. R, Snow, R. C, Smith, F. M, et al. Influence of surface coating on the performance of V-Cu, V-Ti, and Ta membranes for hydrogen separation. In: Akin, F. T, Lin, Y. S, editors. Inorganic membranes: proceedings of the eighth international conference on inorganic membranes. Chicago: Adams Press; 2004. pp. 363–6.

    Google Scholar 

  61. Paglieri, Steven N, Anderson, Iver E, Terpstra, Robert L, Venhaus, Thomas J, Wang, Yongqiang, Buxbaum, Robert E, et al. Metal membranes for hydrogen separation. 20th Annual Conf. Fossil Energy Mater, Knoxville, Tennessee, USA,US DOE, 12–14 June 2006, p. 31.

    Google Scholar 

  62. Behr, Friedrich, Schulten, Rudolf, Weirich, Walter. Diffusion Membrane and Process for Separating Hydrogen from Gas Mixture. US Patent 4,496,373, 29 Jan 1985.

    Google Scholar 

  63. Buxbaum, Robert E. Apparatus and Methods for Gas Extraction. US Patent 6,183,543 B1, 6 Feb 2001.

    Google Scholar 

  64. Ramsey, William. Phil Mag. 1894;38:206.

    Google Scholar 

  65. Amandusson, H, Ekedahl, L-G, Dannetun, H. The effect of CO and O2 on hydrogen permeation through a palladium membrane. Appl Surf Sci. 2000;153:259–67.

    Article  CAS  Google Scholar 

  66. Mundschau, M, Kordesch, M. E, Rausenberger, B, Engel, W, Bradshaw, A. M, Zeitler, E. Real-time observation of the nucleation and propagation of reaction fronts on surfaces using photoemission electron microscopy. Surf Sci. 1990;227:246–60.

    Article  CAS  Google Scholar 

  67. Hale, William J. Production of Catalytic Septa. US Patent 2,206,773, 2 July 1940.

    Google Scholar 

  68. Morreale, Bryan David. The influence of H2S on palladium and palladium-copper alloy membranes. Dissertation, University of Pittsburgh, Pittsburgh, P. A, August 2006, and references therein.

    Google Scholar 

  69. Morreale, B. D, Ciocco, M. V, Howard, B. H, Killmeyer, R. P, Cugini, A. V, Enick, R. M. Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures. J Membr Sci. 2004;241:219–24.

    Article  CAS  Google Scholar 

  70. Alfonso, Dominic R, Cugini, Anthony V, Sholl, David S. Density functional theory studies of sulfur binding on Pd, Cu and Ag and their alloys. Surf Sci. 2003;546:12–26.

    Article  CAS  Google Scholar 

  71. Kulprathipanja, A, Alptekin, G. O, Falconer, J. L, Way, J. D. Effects of water-gas shift gases on Pd-Cu alloy membrane surface morphology and separation properties. Ind Eng Chem Res. 2004;43:4188–98.

    Article  CAS  Google Scholar 

  72. Kulprathipanja, A, Alptekin, G. O, Falconer, J. L, Way, J. D. Pd and Pd-Cu membranes: inhibition of H2 permeation by H2S. J Membr Sci. 2005;254:49–62.

    Google Scholar 

  73. de Rosset, Armand J. Purification of Hydrogen Utilizing Hydrogen-Permeable Membranes. US Patents 2,824,620, 25 Feb 1958 and 2,958,391, 1 Nov 1960.

    Google Scholar 

  74. Gade, Sabina K, Keeling, Matthew K, Steele, Daniel K, Thoen, Paul M, Way, J. Douglas, DeVoss, Sarah, et al. Sulfur resistant Pd-Au composite membranes for H2 separations. Proc. 9th Int Conf. Inorganic Membranes, Lillehammer, Norway, 25–29 June 2006.

    Google Scholar 

  75. Yamamoto, Yuzo, Goto, Ryosuke. Palladium Alloy Permeable Wall for the Separation and Purification of Hydrogen. US Patent 3,155,467, 3 Nov 1964.

    Google Scholar 

  76. McBride, Robert B, Nelson Robert T, McKinley, David L, Hovey, Roger S. Hydrogen Continuous Production Method and Apparatus. US Patent 3,336,730, 22 Aug 1967.

    Google Scholar 

  77. McBride, R. B, McKinley D. L. A new hydrogen recovery route. Chem Eng Progr. 1965;61(3):81–5.

    CAS  Google Scholar 

  78. Beamish, F. E, McBryde, W. A. E, Barefoot, R. R. The platinum metals. In: Hampel, Clifford A, editor. Rare metals handbook. New York: Reinhold, NY, 1954. pp. 291–328.

    Google Scholar 

  79. Read, W. T. Jr. Dislocations in crystals. New York: McGraw-Hill; 1953.

    Google Scholar 

  80. Cottrell, A. H. Dislocations and plastic flow in crystals. Oxford: Oxford University Press; 1953.

    Google Scholar 

  81. Gjostein, N. A. Short circuit diffusion. In: Diffusion. Metals Park, OH: American Society for Metals. 1973. pp. 241–74.

    Google Scholar 

  82. McLean, D. Grain boundaries in metals. Oxford: Oxford University Press; 1957.

    Google Scholar 

  83. Broom, T, Ham, R. K. The effects of lattice defects on some physical properties of metals. In: Vacancies and other point defects in metals and alloys. London: The Institute of Metals; 1958. pp. 41–78.

    Google Scholar 

  84. Jost, W. Diffusion in solids, liquids and gases. New York: Academic Press; 1952.

    Google Scholar 

  85. Crank, J. The mathematics of diffusion. Oxford: Oxford University Press; 1967.

    Google Scholar 

  86. Buxbaum, Robert E. Hydrogen Generator. US Patent 6,461,408 B2, 8 Oct 2002.

    Google Scholar 

  87. Collins, R. E. Flow of fluids through porous materials. New York: Reinhold; 1961.

    Google Scholar 

  88. Brunauer, S. The adsorption of gases and vapors. Princeton: Princeton University Press; 1945.

    Google Scholar 

  89. Brunauer, S, Copeland, L. E, Kantro, D. L. The langmuir and BET theories. In: Flood, E. Alison, editor. The solid-gas interface; flood. New York: Marcel Dekker; 1966. pp. 77–103.

    Google Scholar 

  90. Laidler, K. L. Chemisorption. In: Emmett, P. H, editor. Catalysis, fundamental principles. Vol. 1. New York: Reinhold ; 1954. pp. 75–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Mundschau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mundschau, M.V. (2009). Hydrogen Separation Using Dense Composite Membranes: Part 1 Fundamentals. In: Bose, A.C. (eds) Inorganic Membranes for Energy and Environmental Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34526-0_8

Download citation

Publish with us

Policies and ethics