Skip to main content

Mixed-Conducting Perovskite Reactor for High-Temperature Applications: Control of Microstructure and Architecture

  • Chapter
  • 1409 Accesses

Abstract

High-temperature applications of perovskite-type membrane reactors require improved material performances and operational stability. The reactor microstructure and architecture controls were found to be crucial for thermo-mechanical integrity and oxygen permeation kinetics. A multilayer reactor was developed, using second-phase particles to control its microstructure and a co-sintering process to control its architecture.

Keywords

  • Porous Layer
  • Porous Support
  • Oxygen Permeation
  • Perovskite Material
  • French Patent

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-34526-0_6
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-0-387-34526-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armor JNJ. Membr Sci. 1998;147:217–33.

    CrossRef  CAS  Google Scholar 

  2. Sammells AF, Schwartz M, Mackay RA, Barton TF, Peterson DR. Catal. Today. 2000;56: 325–8.

    CrossRef  CAS  Google Scholar 

  3. Wilhelm DJ, Simbeck DR, Karp AD, Dickenson RL. Fuel Process Technol. 2001;71:139–48.

    CrossRef  CAS  Google Scholar 

  4. Balachandran U, Dusek JT, Sweeney SM, Poeppel RB, Mieville RL, Maiya PS, et al. Am Ceram Soc Bull. 1995;74:71–5.

    CAS  Google Scholar 

  5. Hazbun EA. US Patent 4,827,071, 1989.

    Google Scholar 

  6. Thorogood RM, Srinivasan R, Yee TF, Drake MP. US Patent 5,240,480, 1993.

    Google Scholar 

  7. Gottzmann CF, Prasad R, Schwartz JM. Eur Patent 0,962,422,B1, 1999.

    Google Scholar 

  8. Schwartz M, White JH, Sammells AF. US Patent 6,033,632, 2000.

    Google Scholar 

  9. Mazanec TJ, Cable TL. US Patent 5,648,304, 1997.

    Google Scholar 

  10. Tsai CY, Dixon AG, Moser WR, Ma YH. AIChE J. 1997;43:2741–50.

    Google Scholar 

  11. Teraoka Y, Zhang HM, Furukawa S, Yamazoe N. Chem Lett. 1985;11:1743–46.

    CrossRef  Google Scholar 

  12. Gellings PJ, Bouwmeester HJM. Catal Today. 1992;12:1–105.

    CrossRef  CAS  Google Scholar 

  13. Bouwmeester HJM. Catal Today. 2003;82:141–50.

    CrossRef  CAS  Google Scholar 

  14. Kim S, Wang S, Chen X, Yang YL, Wu N, Ignatiev A, et al. Electrochem Soc. 2000;147:2398–406.

    CrossRef  CAS  Google Scholar 

  15. Ishihara T, Tsuruta Y, Todaka T, Nishiguchi H, Takita Y. Solid State Ionics. 2002; 152–153:709–14.

    Google Scholar 

  16. Kharton VV, Yaremchenko AA, Patrakeev MV, Naumovich EN, Marques FMBJ. Eur Ceram Soc. 2003;23:1417–26.

    CrossRef  CAS  Google Scholar 

  17. Ritchie JT, Richardson JT, Luss D. AIChE J. 2001;47:2092–101.

    CrossRef  CAS  Google Scholar 

  18. Etchegoyen G, Chartier T, Del-Gallo P. French Patent FR2857355, 2003.

    Google Scholar 

  19. Etchegoyen G, Chartier T, Del-Gallo P. French Patent, 2004.

    Google Scholar 

  20. Deng H, Zhou M, Abeles B. Solid State Ionics. 1995;80:213–22.

    CrossRef  CAS  Google Scholar 

  21. Teraoka Y, Fukuda T, Miura N, Yamazoe NJ. Ceram Soc Jpn Int Ed. 1989;97:523–9.

    Google Scholar 

  22. Chen CH, Bouwmeester HJM, van Doorn RHE, Kruidhof H, Burggraaf AJ. Solid State Ionics. 1997;98:7–13.

    Google Scholar 

  23. Jin W, Li S, Huang P, Xu N, Shi JJ. Membr Sci. 2001;185:237–43.

    CrossRef  CAS  Google Scholar 

  24. Hong L, Chen X, Cao ZJ. Eur Ceram Soc. 2001;21:2207–15.

    CrossRef  CAS  Google Scholar 

  25. Kharton VV, Kovalevsky AV, Yaremchenko AA, Figueiredo FM, Naumovich EN, Shaulo AL, et al. Membr Sci. 2002;195:277–87.

    CrossRef  CAS  Google Scholar 

  26. Lee S, Lee KS, Woo SK, Kim JW, Ishihara T, Kim DK. Solid State Ionics. 2003;158:287–96.

    CrossRef  CAS  Google Scholar 

  27. Middleton H, Diethelm S, Ihringer R, Larrain D, Sfeir J, Van Herle JJ. Eur Ceram Soc. 2004;24:1083–6.

    CrossRef  CAS  Google Scholar 

  28. Etchegoyen G, Chartier T, Julian A, Del-Gallo PJ. Membr Sci. 2006;268:86–95.

    CrossRef  CAS  Google Scholar 

  29. Hen CC, Prasad R, Gottzmann CF. Eur Patent 0,850,679,A2, 1998.

    Google Scholar 

  30. van Calcar P, Mackay RA, Sammells AF. US Patent 6,471,921,B1, 2002.

    Google Scholar 

  31. Li D, Liu W, Zhang H, Jiang G, Chen C. Mater Lett. 2004;58:1561–4.

    CrossRef  CAS  Google Scholar 

  32. Etchegoyen G, Chartier T, Del-Gallo P. French Patent FR0350802, 2003.

    Google Scholar 

  33. Zener C, Smith CS. Trans AIME. 1948;175:15–51.

    Google Scholar 

  34. Chartier T, Guillotin F. French Patent FR 2,817,860, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Del Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Etchegoyen, G., Chartier, T., Wattiaux, A., Gallo, P.D. (2009). Mixed-Conducting Perovskite Reactor for High-Temperature Applications: Control of Microstructure and Architecture. In: Bose, A.C. (eds) Inorganic Membranes for Energy and Environmental Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34526-0_6

Download citation