Skip to main content

Advanced Materials and Membranes for Applications in Hydrogen and Energy Production

Structural and Stability Aspects of Amorphous Materials

  • Chapter
Inorganic Membranes for Energy and Environmental Applications

Abstract

General criteria for selection of materials for the processing of hydrogen separation membranes are discussed. Performance and stability standards required for applications in high temperature membrane reactors have been focused. The correlations between pore structure and stability issues of membranes made of amorphous materials, specifically silica membranes are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Itoh N. A membrane reactor using palladium. AIChE J. 1987;33:1576.

    Article  CAS  Google Scholar 

  2. Zaman J, Chakma A. Inorganic membrane reactors. J Memb Sci. 1994;92:1–28.

    Article  CAS  Google Scholar 

  3. Armor JN. Membrane catalysis: where is it now, what needs to be done. Catal Today. 1995;25:199–207.

    Article  CAS  Google Scholar 

  4. Tsuru T, Wada S, Izumi S, Asaeda M. Catalytic membrane reactors for methane reforming using hydrogen perm-selective silica membranes. J Memb Sci. 1998;149:127.

    Article  CAS  Google Scholar 

  5. Lin J, Kumakiri I, Nair BN, Alsyouri H. Microporous ceramic membranes: review. Sep Purif Methods. 2002;31(2):229.

    Article  CAS  Google Scholar 

  6. Uhlhorn RJR, Keizer K, Burggraaf AJ. Gas transport and separation with ceramic membranes. Part II. Synthesis and separation properties of microporous membranes. J. Memb Sci. 1992;66:271–87.

    Google Scholar 

  7. Nair BN, Keizer K, Okubo T, Nakao SI. Evolution of pore structure in microporous silica membranes: sol-gel procedures and strategies. Adv Mater. 1998;10(3):249–52.

    Article  CAS  Google Scholar 

  8. Larbot A, Julbe A, Guizard C, Cot L. Silica membranes by the sol-gel process. J Memb Sci. 1989;44:289.

    Article  CAS  Google Scholar 

  9. Brinker CJ, Sehgal R, Hietala SL, Deshpande R, Smith DM, Loy D, et al. Sol-gel strategies for controlled porosity inorganic materials. J Memb Sci. 1994;94:85.

    Article  CAS  Google Scholar 

  10. Suda H, Haraya K, Hydrogen separation with carbon membranes. Membrane. 1995;30(1): 7–12.

    Google Scholar 

  11. Nair BN, Okubo T, Nakao S. Structure and separation properties of silica membranes: review. Membrane. 2000;25(2):73–85.

    CAS  Google Scholar 

  12. Burggraaf AJ, Cot L, editors. Fundamentals of inorganic membrane science and technology. The Netherlands: Elsevier Science BV; 1996; pp. 331–50.

    Google Scholar 

  13. Chang CH, Gopalan R, Lin YS. Comparative study on thermal and hydrothermal stability of alumina, titania and zirconia membranes. J Memb Sci. 1994;91:27–45.

    Article  CAS  Google Scholar 

  14. Sekuli J, ten Elshof JE, Blank DHA. A microporous titania membrane for nanofiltration and pervaporation. Adv Mater. 2004;16(17):1546–50.

    Article  Google Scholar 

  15. Vercauteren S, Keizer K, Vansant EF, Luyten J, Leysen R. Porous ceramic membranes: preparation, transport properties and applications. J Porous Mater. 1998;5:241–58.

    Article  CAS  Google Scholar 

  16. Vroon ZAEP. Ph.D. thesis, University of Twente, Enschede, The Netherlands, 1995.

    Google Scholar 

  17. Yamanaka S, Hattori M. Inorganic phosphate materials. Tokyo: Kodansha/Elsevier; 1989; pp. 131–55.

    Google Scholar 

  18. Armor JN, Farris TS. The unusual hydrothermal stability of Co-ZSM-5. Appl Catal B. 1994;4, L11–17.

    Article  CAS  Google Scholar 

  19. Uemiya S. Metal membranes for hydrogen separation. Membrane. 1995;30(1):13–9.

    Google Scholar 

  20. Iwahara H. Technological challenges in the application of proton conducting ceramics. Solid State Ionics. 1995;77:289–98.

    Article  CAS  Google Scholar 

  21. Norby T, Larring Y. Mixed hydrogen ion-electronic conductors for hydrogen permeable membranes. Solid State Ionics. 2000;136–137:139–48.

    Article  Google Scholar 

  22. Nowick AS, Du Y. High temperature protonic conductors with perovskite-related structures. Solid State Ionics. 1995;77:137.

    Article  CAS  Google Scholar 

  23. Balachandran U, Ma B, Lee T, Chen L, Song SJ, Dorris SE. Development of dense ceramic membranes for hydrogen production and separation. Proceedings of the ICIM-8, Cincinnati, OH, 2004, pp. 163–6.

    Google Scholar 

  24. de Lange RSA. Ph.D. thesis, Uni. Twente, Enschede, The Netherlands, 1993.

    Google Scholar 

  25. Yoshida K, Hirano Y, Fujii H, Tsuru T, Asaeda M. Hydrothermal stability and performance of silica-zirconia membranes for hydrogen separation in hydrothermal conditions. sJ Chem Eng Jpn. 2001;34(4):523–30.

    Article  CAS  Google Scholar 

  26. Julbe A, Guizard C, Larbot A, Cot L, Giroir-Fendler A. The sol-gel approach to prepare candidate microporous inorganic membranes for membrane reactors. J Memb Sci. 1993;77: 137–53.

    Article  CAS  Google Scholar 

  27. Kusakabe K., Membrane separation for hydrogen utilization. Membrane. 2005;30(1):2–6.

    CAS  Google Scholar 

  28. Hasegawa Y, Kusakabe K, Morooka S. Selective oxidation of CO in hydrogen rich mixtures by permeation through a Pt-loaded Y-type zeolite membrane. J Memb Sci. 2001;19:1–8.

    Article  Google Scholar 

  29. Yokoyama M, Miyajima K, Nair BN, Taguchi H, Ando Y, Nagaya S, et al. Development of SiN based ceramic membrane. Proceedings of the ICIM-8, Cincinnati, OH, 2004, pp. 561–5.

    Google Scholar 

  30. Miyajima K, Ando Y, Yokoyama M, Nair BN, Taguchi H, Nagaya S, et al. Development of Si-N based ceramic membranes. Memb News. 2004;66(12):17–21.

    Google Scholar 

  31. Kusakabe K, Li ZY, Maeda H, Morooka S. Preparation of thermostable amorphous Si-C-O membrane and its application to gas separation at elevated temperature. J Memb Sci. 1995;103:175–80.

    Article  CAS  Google Scholar 

  32. Lee LL, Tsai DS. Synthesis and permeation properties of silicon-carbon based inorganic membranes for gas separation. Ind Eng Chem Res. 2001;40:612–6.

    Article  CAS  Google Scholar 

  33. Prabhu AK, Oyama ST. Highly hydrogen selective ceramic membranes; application to the transformation of greenhouse gases. J Memb Sci. 2000;176(2):233.

    Article  CAS  Google Scholar 

  34. Nomura M, Ono K, Gopalakrishnan S, Sugawara T, Nakao SI. Preparation of a stable silica membrane by a counter diffusion chemical vapor deposition method. J Memb Sci. 2005;251(1–2):151–58.

    Article  CAS  Google Scholar 

  35. Oyama ST, Lee D, Hacarlioglu P, Saraf RF. Theory of hydrogen permeability in nonporous silica membranes. J Memb Sci. 2004;244(1–2):45–53.

    Google Scholar 

  36. Nair BN. Ph.D. thesis, Uni. Tokyo, Tokyo, Japan, 1998.

    Google Scholar 

  37. Nair BN, Keizer K, Suematsu H, Suma Y, Ono S, Okubo T, et al. Synthesis of gas and vapor molecular sieving silica membranes and analysis of pore size and connectivity. Langmuir. 2000;16(10):4558–662.

    Article  CAS  Google Scholar 

  38. Raman NK, Brinker CJ. Organic template approach to molecular sieving silica membranes. J Memb Sci. 1995;105:273–9.

    Article  CAS  Google Scholar 

  39. Raman NK, Anderson MT, Brinker CJ. Template based approaches to the preparation of amorphous nanoporous silicas. Chem Mater. 1996;8:1682–701.

    Article  CAS  Google Scholar 

  40. Avnir D. Organic chemistry within ceramic matrices: doped sol-gel materials. Acc Chem Res. 1995;28:328–34.

    Article  CAS  Google Scholar 

  41. Schwertfeger F, Glaubitt W, Schubert U. Hydrophobic aerogels from Si(OMe)4/MeSi(OMe)3 mixtures. J Non-Cryst Solids. 1992;145:85–9.

    Article  CAS  Google Scholar 

  42. Liu C, Komarneni S. Nitrogen and water sorption properties of ethyl substituted silica aerogels and xerogels. Mat Res Soc Symp Proc. 1995;371:217–22.

    Google Scholar 

  43. Tsuru T, Yamaguchi K, Yoshioka T, Asaeda M. Methane steam reforming by microporous catalytic membrane reactors. AIChE J. 2004;50(11):2794–805.

    Article  CAS  Google Scholar 

  44. Ogbuji LUJT. The SiO2-Si3N4 interface. J Am Ceram Soc. 1995;78(5):1272–84.

    Article  CAS  Google Scholar 

  45. Nair BN, Suzuki T, Yoshino Y, Gopalakrishnan S, Sugawara T, Nakao SI, et al. An oriented nanoporous membrane. Adv Mat. 2005;17(9):1136–40.

    Article  CAS  Google Scholar 

  46. Kawamura H, Yamaguchi T, Nair BN, Nakagawa K, Nakao SI. Dual ion conducting membrane for high temperature CO2 separation. J Chem Eng Jpn. 2005;38(5):322–8.

    Google Scholar 

  47. Yoshino Y, Suzuki T, Yamada D, Nair BN, Taguchi H, Itoh N. Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature. J Memb Sci. 2005;267(1–2):8–17.

    Article  CAS  Google Scholar 

  48. Yoshino Y, Suzuki T, Nair BN, Taguchi H, Nomura M, Nakao SI, et al. Silica embrane modules for hydrogen separation at high temperature. Proceedings of the ICIM-9, Lillehammer, Norway, June 2006, pp. 143–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balagopal N. Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nair, B.N., Ando, Y., Taguchi, H. (2009). Advanced Materials and Membranes for Applications in Hydrogen and Energy Production. In: Bose, A.C. (eds) Inorganic Membranes for Energy and Environmental Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34526-0_16

Download citation

Publish with us

Policies and ethics