Skip to main content

An Axiomatic Approach to Multidimensional Poverty Measurement via Fuzzy Sets

  • Chapter

Part of the Economic Studies in Inequality, Social Exclusion and Well-Being book series (EIAP,volume 3)

Keywords

  • Membership Function
  • Poverty Measurement
  • Poverty Status
  • Multidimensional Poverty
  • Poverty Index

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-34251-1_4
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-34251-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkire S (2005) Measuring the freedom aspects of capabilities. Global Equity Initiative, Harvard University

    Google Scholar 

  • Anand S (1997) Aspects of poverty in Malaysia. Review of Income and Wealth 23:1–16.

    CrossRef  Google Scholar 

  • Atkinson AB (2003) Multidimensional deprivation: contrasting social welfare and counting approaches. Journal of Economic Inequality 1:51–65.

    CrossRef  Google Scholar 

  • Atkinson AB, Bourguignon F (1982) The comparison of multidimensioned distributions of economic status. Review of Economic Studies 49:183–201.

    CrossRef  Google Scholar 

  • Balestrino A (1994) Poverty and functionings: issues in measurement and public action. Giornale degli economisti e Annali di economia 53:389–406.

    Google Scholar 

  • Balestrino A (1998) Counting the poor in a fuzzy way: the head-count ratio and the monotonicity transfer axioms. Notizie di Politeia 14:77–86.

    Google Scholar 

  • Balestrino A, Chiappero-Martinetti E (1994) Poverty, differentiated needs and information. Mimeo, University of Pisa

    Google Scholar 

  • Baliamoune M (2003) On the measurement of human well-being: fuzzy set theory and Sen’s capability approach. Presented at the WIDER conference on Inequality, Poverty and Human Well-being, 30-31 May

    Google Scholar 

  • Basu K (1987) Axioms for fuzzy measures of inequality. Mathematical Social Sciences 14:69–76.

    CrossRef  Google Scholar 

  • Betti G, Verma VK (1998) Measuring the degree of poverty in a dynamic and comparative context: a multidimensional approach using fuzzy set theory. Working Paper n. 22, Department of Quantitative Methods, University of Siena

    Google Scholar 

  • Blackorby C, Donaldson D (1980) Ethical indices for the measurement of poverty. Econometrica 58:1053–1060.

    CrossRef  Google Scholar 

  • Blaszczak-Przybycinska I (1992) Multidimensional statistical analysis of poverty in Poland. In: Polish Statistical Association and Central Statistical Office (ed.), Poverty measurement for economies in transition. Warsaw, pp 307–327.

    Google Scholar 

  • Bourguignon F, Chakravarty SR (1999) A family of multidimensional poverty measures. In: Slottje DJ (ed), Advances in econometrics, income distribution and scientific methodology: essays in honor of C. Dagum. Physica-Verlag, Heidelberg, pp 331–344.

    Google Scholar 

  • Bourguignon F, Chakravarty SR (2003) The measurement of multidimensional poverty. Journal of Economic Inequality 1:25–49.

    CrossRef  Google Scholar 

  • Casini L, Bernetti I (1996) Public project evaluation, environment, sustainability and Sen’s theory. In: Balestrino A, Carter I (eds) Functionings and capabilities: normative and policy issues. Notizie di Politeia, 12:55–78.

    Google Scholar 

  • Cerioli A, Zani S (1990) A fuzzy approach to the measurement of poverty. In: Dagum C, Zenga M (eds) Income and wealth distribution, inequality and poverty. Springer-Verlag, New York, pp 272–284.

    Google Scholar 

  • Chakravarty SR (1983a) Ethically flexible measures of poverty. Canadian Journal of Economics 16:74–85.

    CrossRef  Google Scholar 

  • Chakravarty SR (1983b) A new index of poverty. Mathematical Social Sciences 6:307–313.

    MATH  CrossRef  Google Scholar 

  • Chakravarty SR (1983c) Measures of poverty based on representative income gaps. Sankhya 45:69–74.

    Google Scholar 

  • Chakravarty SR (1990) Ethical social index numbers. Springer-Verlag, New York

    Google Scholar 

  • Chakravarty SR (1997) On Shorrocks’ reinvestigation of the Sen poverty index. Econometrica 65:1241–1242.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Chakravarty SR, Kanbur R, Mukherjee D (2005) Population growth and poverty measurement. Social Choice and Welfare: forthcoming

    Google Scholar 

  • Chakravarty SR, Majumder A (2005) Measuring human poverty: a generalized index and an application using basic dimensions of life and some anthropometric indicators. Journal of Human Development 6:275–299.

    CrossRef  Google Scholar 

  • Chakravarty SR, Mukherjee D, Ranade R (1998) On the family of subgroup and factor decomposable measures of multidimensional poverty. Research on Economic Inequality 8:175–194.

    Google Scholar 

  • Chakravarty SR, Roy R (1995) Measurement of fuzziness: a general approach. Theory and Decision 19:163–169.

    CrossRef  MathSciNet  Google Scholar 

  • Cheli B, Lemmi A (1995) A “Totally” fuzzy and relative approach to the multi-dimensional analysis of poverty. Economic Notes 24:115–134.

    Google Scholar 

  • Chiappero-Martinetti E (1994) A new approach to evaluation of well-being and poverty by fuzzy set theory. Giornale degli economisti e annali di economia 53:367–388.

    Google Scholar 

  • Chiappero-Martinetti E (1996) Standard of living evaluation based on Sen’s approach: some methodological suggestions. Politeia 12:37–53.

    Google Scholar 

  • Chiappero-Martinetti E (2005) Complexity and vagueness in the capability approach: strengths or weaknesses? In: Comim F, Qizilbash M, Alkire S (eds) The capability approach in human development: concepts, applications and measurement. Cambridge University Press, Cambridge: forthcoming

    Google Scholar 

  • Clark S, Hemming R, Ulph D (1981) On indices for the measurement of poverty Economic Journal 91:515–526.

    CrossRef  Google Scholar 

  • Dagum C, Gambassi R, Lemmi A (1992) New approaches to the measurement of poverty. In: Polish Statistical Association and Central Statistical Office (ed) Poverty measurement for economies in transition. Warsaw, pp 201–226.

    Google Scholar 

  • Dasgupta P, Sen AK, Starett D (1973) Notes on the measurement of inequality. Journal of Economic Theory 6:180–187.

    CrossRef  MathSciNet  Google Scholar 

  • Donaldson D, Weymark JA (1986) Properties of fixed-population poverty indices. International Economic Review 27:667–688.

    MATH  CrossRef  Google Scholar 

  • Dubois D, Prade H (1980) Fuzzy sets and systems. Academic Press, London

    MATH  Google Scholar 

  • Foster JE (1984) On economic poverty measures: a survey of aggregate measures. In: Basmann RL, Rhodes GF (eds) Advances in Econometrics, Vol.3. JAI Press, Connecticut

    Google Scholar 

  • Foster JE, Greer J, Thorbecke E (1984) A class of decomposable poverty measures. Econometrica 42:761–766.

    CrossRef  Google Scholar 

  • Foster JE, Shorrocks AF (1991) Subgroup consistent poverty indices. Econometrica 59:687–709.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Haagenars AJM (1987) A class of poverty measures. International Economic Review 28:593–607.

    CrossRef  Google Scholar 

  • Kakwani NC (1980a) Income inequality and poverty: methods of estimation and policy applications. Oxford University Press, Oxford

    Google Scholar 

  • Kakwani NC (1980b) On a class of poverty measures. Econometrica 48:437–446.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Kolm SC (1969) The optimal production of social justice. In: Margolis J, Guitton H (eds) Public economics. Macmillan, London, pp 145–200.

    Google Scholar 

  • Kolm SC (1977) Multidimensional egalitarianism. Quarterly Journal of Economics 91:1–13.

    MATH  CrossRef  Google Scholar 

  • Kundu A, Smith TE (1983) An impossibility theorem on poverty indices. International Economic Review 24:423–434.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Lipton M, Ravallion M (1995) Poverty and policy. In: Behrman J, Srinivasan TN (eds) Handbook of development economics, Vol. 1. North Holland, Amsterdam

    Google Scholar 

  • Marshall AW, Olkin I (1979) Inequalities: theory of majorization and its applications. Academic Press, London

    MATH  Google Scholar 

  • Ok E (1995) Fuzzy measurement of income inequality: a class of fuzzy inequality measures. Social Choice and Welfare 12:115–136.

    CrossRef  MathSciNet  Google Scholar 

  • Osmani S (1992) Introduction. In: Osmani SR (ed) Nutrition and poverty. Oxford University Press, Oxford

    Google Scholar 

  • Pannuzi N, Quaranta AG (1995) Measuring poverty: a study case in an Italian industrial city. In: Dagum C, Lemmi A (eds) Income Distribution, Social Welfare, Inequality and Poverty, Volume 6 of Slottje DJ (ed) Research on Economic Inequality, JAI Press Inc., London, pp 323–336.

    Google Scholar 

  • Qizilbash M (2002) A note on the measurement of poverty and vulnerability in the South African context. Journal of International Development 14:757–772.

    CrossRef  Google Scholar 

  • Ravallion M (1996) Issues in measuring and modeling poverty. Economic Journal 106:1328–1343.

    CrossRef  Google Scholar 

  • Seidl C (1988) Poverty measurement: a survey. In: Bos D, Rose M, Seidl C (eds) Welfare efficiency in public economics. Springer-Verlag, New York

    Google Scholar 

  • Sen AK (1976) Poverty: on ordinal approach to measurement. Econometrica 44:219–231.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Sen AK (1979) Issues in the measurement of poverty. Scandinavian Journal of Economics 81:285–307.

    CrossRef  Google Scholar 

  • Sen AK (1981) Poverty and famines. Clarendon Press, Oxford

    Google Scholar 

  • Sen AK (1985) Commodities and capabilities. North Holland, Amsterdam

    Google Scholar 

  • Sen AK (1987) Standard of living. Cambridge University Press, Cambridge

    Google Scholar 

  • Sen AK (1992) Inequality re-examined. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Sen AK (1997) On economic inequality, with a substantial annexe by Foster JE. Oxford University Press, Oxford

    Google Scholar 

  • Shorrocks AF (1995) Revisiting the Sen poverty index. Econometrica 63:1225–1230.

    MATH  CrossRef  Google Scholar 

  • Shorrocks AF, Subramanian S (1994) Fuzzy poverty indices. University of Essex

    Google Scholar 

  • Streeten P (1981) First things first: meeting basic human needs in developing countries. Oxford University Press, Oxford

    Google Scholar 

  • Subramanian S (2002) Counting the poor: an elementary difficulty in the measurement of poverty. Economics and Philosophy 18:277–285.

    CrossRef  MathSciNet  Google Scholar 

  • Takayama N (1979) Poverty income inequality and their measures: Professor Sen’s axiomatic approach reconsidered. Econometrica 47:749–759.

    CrossRef  MathSciNet  Google Scholar 

  • Thon D (1983) A poverty measure. Indian Economic Journal 30:55–70.

    Google Scholar 

  • Tsui KY (2002) Multidimensional poverty indices. Social Choice and Welfare 19:69–93.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • UNDP (1997) Human development report. Oxford University Press, Oxford

    Google Scholar 

  • Watts H (1968) An economic definition of poverty. In: Moynihan DP (ed) On understanding poverty. Basic Books, New York

    Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Information and Control 8:338–353.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Zheng 13 (1997) Aggregate poverty measures. Journal of Economic Surveys 11:123–162.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chakravarty, S.R. (2006). An Axiomatic Approach to Multidimensional Poverty Measurement via Fuzzy Sets. In: Lemmi, A., Betti, G. (eds) Fuzzy Set Approach to Multidimensional Poverty Measurement. Economic Studies in Inequality, Social Exclusion and Well-Being, vol 3. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-34251-1_4

Download citation