Skip to main content

The Mathematical Framework of Fuzzy Logic

  • Chapter

Part of the Economic Studies in Inequality, Social Exclusion and Well-Being book series (EIAP,volume 3)

Keywords

  • Fuzzy Logic
  • Fuzzy Number
  • Membership Degree
  • Fuzzy Subset
  • Duality Relation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-34251-1_3
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-34251-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellman RE, Giertz M (1973) On the Analytic Formalism of the Theory of Fuzzy Sets. Information Sciences 5:149–156.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Management Science 17:141–164.

    MathSciNet  CrossRef  Google Scholar 

  • Bonissone PP, Decker KS (1986) Selecting Uncertainty Calculi and Granularity: An Experiment in Trading-Off Precision and Complexity. In: Kanal and Lemmer (eds), Uncertainty in Artificial Intelligence, Amsterdam, pp 217–247.

    Google Scholar 

  • Bouchon-Meunier B (1995) La logique floue et ses applications. Editions Addison-Wesley France, Paris

    Google Scholar 

  • Dubois D, Grabisch M (1994) Agrégation multicritère et optimisation. In: Logique floue, ARAGO 14-OFTA. Masson, Paris, pp 179–199.

    Google Scholar 

  • Dubois D, Prade H (1979) Fuzzy Real Algebra: Some Results. Fuzzy Sets and Systems 2:327–348.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Dubois D, Prade H (1980) Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York

    MATH  Google Scholar 

  • Dubois D, Prade H (1985) A Review of Fuzzy Sets Aggregation Connectives. Information Sciences 36:85–121.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Dubois D, Prade H (1986) Weighted Minimum and Maximum Operations. Fuzzy Sets Theory. Information Sciences 39:12–28.

    CrossRef  MathSciNet  Google Scholar 

  • Dubois D, Prade H (1991) On the ranking of ill-known values in possibility theory. Fuzzy Sets and Systems 43:311–317.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Fodor J, Roubens M (1992) Aggregation and Scoring Procedures in Multicriteria Decision Making Methods. In: FUZZ-IEEE’92 (Actes de la 1ère Conférence Internationale sur les Systèmes Flous), San Diego, pp 13–21.

    Google Scholar 

  • Fodor J, Roubens M (1994) Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Fustier B (1994) Approche qualitative d’un problème d’évaluation. Journal de Mathématiques du Maroc 2:81–86.

    Google Scholar 

  • Fustier B (2000) Evaluation, prise décision et logique floue. Economie appliquée 1:155–174.

    Google Scholar 

  • Fustier B, Serra D (2001) Sensibilité des sites touristiques. Une approche fondée sur la logique floue. Teoros 3:45–53.

    Google Scholar 

  • Lukasiewicz J (1928) Elements of Mathematical logic. Course given at the University of Warsaw, edited by Pergamon-Polish Scientific Publisher in 1963

    Google Scholar 

  • Mizumoto M (1989a) Pictoral Representations of Fuzzy Connectives: Cases of t-norms, t-conorms and Averaging Operators. Fuzzy Sets and Systems 31:217–242.

    CrossRef  MathSciNet  Google Scholar 

  • Mizumoto M (1989b) Pictoral Representations of Fuzzy Connectives: Cases of Compensatory Operators and Self-dual Operators. Fuzzy Sets and Systems 32:45–79.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Ponsard C (1981a) An application of fuzzy subsets theory to the analysis of the consumer’s spatial preferences. Fuzzy Sets and Systems 5:235–244.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Ponsard C (1981b) L’équilibre spatial du consommateur dans un contexte imprécis. Sistemi Urbani 3:107–133.

    Google Scholar 

  • Ponsard C (1982) Partial spatial equilibria with fuzzy constraints. Journal of Regional Science 22:159–175.

    CrossRef  Google Scholar 

  • Ponsard C (1988) Les espaces économiques flous. In: Ponsard C (ed) Analyse économique spatiale, PUF, Paris, pp 355–389.

    Google Scholar 

  • Ponsard C, Fustier B (1986) Fuzzy Economics and Spatial Analysis. Collection de I’IME-CNRS: 32, Librairie de l’Université (diffuseur), Dijon

    Google Scholar 

  • Werners B (1988) Aggregation Models in Mathematical Programming. In: Mitra G (ed) Mathematical Models for Decision Support, Berlin, New York, London, Paris, pp 295–319.

    Google Scholar 

  • Zadeh LA (1965) Fuzzy Sets. Information and Control 8:338–353.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Zimmermann HJ (1991) Fuzzy set theory and its applications, Second edition. Kluwer Academic Publishers, Norwell

    MATH  Google Scholar 

  • Zimmermann HJ (1993) The German Fuzzy Boom. Les clubs CRIN, La Lettre 4:3–4.

    MATH  Google Scholar 

  • Zimmermann H J, Zysno P (1980) Latent Connectives in Human Decision Making. Fuzzy Sets and Systems 4:37–51.

    MATH  CrossRef  Google Scholar 

  • Zimmermann H J, Zysno P (1983) Decisions and Evaluations by Hierarchical Aggregation of Information. Fuzzy Sets and Systems 10:243–260.

    MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fustier, B. (2006). The Mathematical Framework of Fuzzy Logic. In: Lemmi, A., Betti, G. (eds) Fuzzy Set Approach to Multidimensional Poverty Measurement. Economic Studies in Inequality, Social Exclusion and Well-Being, vol 3. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-34251-1_3

Download citation