Skip to main content

High-Performance Energy-Efficient Dual-Supply ALU Design

  • Chapter
High-Performance Energy-Efficient Microprocessor Design

Abstract

This chapter describes the design of a single-cycle 64-bit integer executionALU fabricated in 90 nm dual-Vt CMOS technology, operating at 4 GHz in the 64-bit mode with a 32-bit mode latency of 7 GHz (measured at 1.3V, 25° C). The lower- and upper-order 32-bit domains operate on separate off-chip supply voltages, enabling conditional turn-on/off of the 64-bit ALU mode operation and efficient power-performance optimization. High-speed single-rail dynamic circuit techniques and a sparse-tree semi-dynamic adder core enable a dense layout occupying 280 × 260µm2 while simultaneously achieving (i) low carry-merge fan-outs and inter-stage wiring complexity, (ii) low active leakage and dynamic power consumption, (iii) highDCnoise robustness with maximum low-Vt usage, (iv) single-rail dynamic-compatible ALU write-back bus, (v) simple 2ф 50% duty-cycle timing plan with seamless time-borrowing across phases, (vi) scalable 64-bitALU performance up to 7 GHz measured at 2.1V, 25° C, and (vii) scalable 32-bit ALU performance up to 9 GHz measured at 1.68V, 25° C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sager, D. et al. “A 0.18µm CMOS IA32 microprocessor with a 4 GHz integer execution unit”, Digest of Tech. Papers, IEEE Intl. Solid-State Circuits Conf., February 2001, 324–325.

    Google Scholar 

  2. Kogge, P.; Stone, H.S. “Aparallel algorithm for the efficient solution of a general class of recurrence equations”, IEEE Trans. on Computers, 1973, c22, 786–793.

    Article  MathSciNet  Google Scholar 

  3. Knowles, S.“A family of adders”, Proc. 14th IEEE Intl. Symp. on Computer Arithmetic, April 1999, 277–281.

    Google Scholar 

  4. Mathew, S.; Anders, M.; Bloechel, B.; Nguyen, T.; Krishnamurthy, R.; Borkar, S. “A 4 GHz 300mW 64-bit integer execution ALU with dual supply voltages in 90 nm CMOS”, Digest of Tech. Papers, IEEE Int. Solid-State Circuits Conf., February 2004, 162–163.

    Google Scholar 

  5. Thompson, S. et al. “A90 nmlogic technology featuring 50 nmstrained silicon channel transistor, 7 layer of Cu interconnects, low-k ILD, 1µm2 SRAM cell”, IEDM Tech. Dig., December 2002, 61–64.

    Google Scholar 

  6. Mathew, S.; Anders, M.; Krishnamurthy, R.; Borkar, S. “A 4 GHz 130 nm address generation unit with 32-bit sparse-tree adder core”, IEEE J. Solid State Circuits, 2003, 38, 689–695.

    Article  Google Scholar 

  7. Alvandpour, A.; Krishnamurthy, R.; Borkar, S. “A sub-130 nm conditional keeper technique”, IEEE J. Solid State Circuits, 2002, 37, 633–638.

    Article  Google Scholar 

  8. Anders, M.; Mathew, S.; Bloechel, B. et al. “A 6.5 GHz 130 nm single-ended dynamic ALU and instruction scheduler loop”, Dig. Tech. Papers, IEEE Int. Solid-State Circuits Conf., February 2002, 410–411.

    Google Scholar 

  9. Naffziger, S. “A sub-nanosecond 0.5smm 64-bit adder design”, Dig. Tech. Papers, IEEE Int Solid-State Circuits Conf., February 1996, 362–363.

    Google Scholar 

  10. Alvandpour, A.; Krishnamurthy, R.; Eckerbert, D.; Apperson, S.; Bloechel, B.; Borkar, S. “A 3.5 GHz 32mW 150 nm multiphase clock generator for highperformance microprocessors”, Dig. Tech. Papers, IEEE Int Solid-State Circuits Conf., February 2003, 112–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Mathew, S.K., Anders, M.A., Krishnamurthy, R.K. (2006). High-Performance Energy-Efficient Dual-Supply ALU Design. In: Oklobdzija, V.G., Krishnamurthy, R.K. (eds) High-Performance Energy-Efficient Microprocessor Design. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34047-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34047-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28594-8

  • Online ISBN: 978-0-387-34047-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics