Lower Bounds for Resource Constrained Project Scheduling Problem

Recent advances
  • Emmanuel Néron
  • Christian Artigues
  • Philippe Baptiste
  • Jacques Carlier
  • Jean Damay
  • Sophie Demassey
  • Philippe Laborie
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 92)


We review the most recent lower bounds for the makespan minimization variant of the Resource Constrained Project Scheduling Problem. Lower bounds are either based on straight relaxations of the problems (e.g., single machine, parallel machine relaxations) or on constraint programming and/or linear programming formulations of the problem.


Resource Constrained Project Scheduling Problem lower bounds constraint programming linear programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez-Valdés, R. and Tamarit, J. M. (1993). The project scheduling polyhedron: dimension, facets and lifting theorems, European Journal of Operational Research, 67:204–220.CrossRefGoogle Scholar
  2. Applegate, D. and Cook, W. (1991). A computational study of job-shop scheduling, ORSA Journal on Computing, 3(2): 149–156.Google Scholar
  3. Baar, T., Brucker, P., and Knust, S. (1998). Tabu-search algorithms and lower bounds for the resource-constrained project scheduling problem. in: Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization, S. Voss, S. Martello, I. Osman and C. Roucairol, eds, Kluwer, pp. 1–18.Google Scholar
  4. Balas, E. (1970). Project scheduling with resource constraints, in: Applications of Mathematical Programming Techniques, Beale, E.M.L., ed, American Elsevier.Google Scholar
  5. Baptiste, Ph. and Demassey, S. (2004). Tight LP bounds for resource constrained project scheduling, OR Spectrum, 26:251–262.CrossRefGoogle Scholar
  6. Baptiste, Ph. and Le Pape, C. (2000). Constraint propagation and decomposition techniques for highly disjunctive and highly cumulative project scheduling problems, Constraints, 5:119–139.CrossRefMathSciNetGoogle Scholar
  7. Baptiste, Ph., Le Pape, C., and Nuijten, W. (1999). Satisfiability tests and time-bound adjustments for cumulative scheduling problems, Annals of Operations Research, 92:305–333.CrossRefMathSciNetGoogle Scholar
  8. Bartusch, M., Möhring, R. H., and Radermacher, F. J. (1988). Scheduling project networks with resource constraints time windows, Annals of Operations Research, 16:201–240.CrossRefMathSciNetGoogle Scholar
  9. Brucker, P. (2002). Scheduling algorithms, Springer Verlag, Berlin.Google Scholar
  10. Brucker, P., Drexl, A., Möhring, R., Neumann, K., and Pesch, E. (1999). Resource-constrained project scheduling problem: Notation, classification, models and methods, European Journal of Operational Research, 112(1): 3–41.CrossRefGoogle Scholar
  11. Brucker, P. and Knust, S. (2000). A linear programming and constraint propagation-based lower bound for the RCPSP, European Journal of Operational Research, 127:355–362.CrossRefGoogle Scholar
  12. Brucker, P., Knust, S., Schoo, A., and Thiele, O. (1998). A branch and bound algorithm for the resource-constrained project scheduling problem, European Journal of Operational Research, 107:272–288.CrossRefGoogle Scholar
  13. Carlier, J. and Latapie, B. (1991). Une méthode arborescente pour résoudre les problémes cumulatifs, RA1RO-Recherche Opérationnelle, 25(3):311–340.MathSciNetGoogle Scholar
  14. Carlier, J. and Néron, E. (2000). A new LP based lower bound for the cumulative scheduling problem, European Journal of Operational Research, 127(2):363–382.CrossRefGoogle Scholar
  15. Carlier, J. and Néron, E. (2003). On linear lower bounds for the resource constrained project scheduling problem, European Journal of Operational Research, 149:314–324.CrossRefMathSciNetGoogle Scholar
  16. Carlier, J. and Pinson, E. (1989). An algorithm for solving the job-shop problem, Management Science, 35:164–176.MathSciNetGoogle Scholar
  17. Carlier, J. and Pinson, E. (1990). A practical use of Jackson’s preemptive schedule for solving the job-shop problem, Annals of Operations Research, 26:269–287.MathSciNetGoogle Scholar
  18. Carlier, J. and Pinson, E. (1994). Adjustment of heads and tails for the job-shop problem, European Journal of Operational Research, 78:146–161.CrossRefGoogle Scholar
  19. Carlier, J. and Pinson, E. (1998). Jackson’s pseudo preemptive schedule for the pm/r i,q i/c max scheduling problem, Annals of Operations Research, 83:41–48.CrossRefMathSciNetGoogle Scholar
  20. Carlier, J. and Pinson, E. (2004). Jackson’s pseudo preemptive schedule and cumulative scheduling problems, Discrete Applied Mathematics, 145:80–94.CrossRefMathSciNetGoogle Scholar
  21. Caseau, Y. and Laburthe, F. (1996). Cumulative scheduling with task intervals, in: Proceedings of the Joint International Conference and Symposium on Logic Programming, JCPSLP’ 96, Maher, M., ed, The MIT Press, Cambridge, MA, pp. 363–377.Google Scholar
  22. Christofides, N., Alvarez-Valdés, R., and Tamarit, J. M. (1987). Project scheduling with resource constraints: a branch and bound approach, European Journal of Operational Research, 29(3):262–273.CrossRefMathSciNetGoogle Scholar
  23. Demassey, S., Artigues, Ch., and Michelon, Ph. (2002). A hybrid constraint propagation-cutting plane algorithm for the RCPSP, in: Proceedings of the 4th International Workshop on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR’ 02, pp. 321–331.Google Scholar
  24. Demassey, S., Artigues, Ch., and Michelon, Ph. (2005). Constraint-propagation-based cutting planes: an application to the resource-constrained project-scheduling problem, INFORMS Journal on Computing, 17(1).Google Scholar
  25. Demeulemeester, E. and Herroelen, W. (2002). Project scheduling. A research handbook, Kluwer Academic Publishers.Google Scholar
  26. Dyer, M. E. and Wolsey, L. A. (1990). Formulating the single machine sequencing problem with release dates as a mixed integer program, Discrete Applied Mathematics, 26:255–270.CrossRefMathSciNetGoogle Scholar
  27. Erschler, J., Lopez, P., and Thuriot, C. (1991). Raisonnement temporel sous con-traintes de ressources et problèmes d’ordonnancement, Revue d’Intelligence Artificielle, 5:7–32.Google Scholar
  28. Fekete, S. P. and Schepers, J. (1998). New classes of lower bounds for bin packing problems, Lecture Notes in Computer Science, 1412:257–270.MathSciNetGoogle Scholar
  29. Garaix, T., Artigues, Ch., and Demassey, S. (2005). Bornes inférieures et supérieur pour le RCPSP, in: Proceedings of 6ième congrès de la Société Française de Recherche Opérationnelle et d’Aide à la Décision, ROADEF 2005, Tours, France, pp. 219–240Google Scholar
  30. Guéret, Ch. and Prins, Ch. (1999). A new lower bound for the open-shop problem, Annals of Operations Research, 92:165–183.CrossRefMathSciNetGoogle Scholar
  31. Haouari, M. and Gharbi, A. (2003). An improved max-flow-based lower bound for minimizing maximum lateness on identical parallel machines, Operations Research Letters, 31:49–52.CrossRefMathSciNetGoogle Scholar
  32. Horn, W.A. (1974). Some simple scheduling algorithms, Naval Research Logistic Quarterly, 21:177–185.MathSciNetGoogle Scholar
  33. Johnson, D. S., Demers, A. J., Ullman, J. D., Garey M. R. and Graham, R. L. (1974). Worst case performance bounds for simple one-dimensional packing algorithms, SIAM Journal of Computing, 3:299–325.CrossRefMathSciNetGoogle Scholar
  34. Klein, R. and Scholl, A. (1999). Computing lower bound by destructive improvement: An application to resource-constrained project scheduling, European Journal of Operational Research, 112:322–346.CrossRefGoogle Scholar
  35. Kolisch, R. and Sprecher, A. (1997). PSPLIB-a project scheduling problem library, European Journal of Operational Research, 96:205–216.CrossRefGoogle Scholar
  36. Laborie, Ph. (2003). Algorithms for propagation of resource constraints in AI planning and scheduling: Existing approaches and new results, Artificial Intelligence, 143:151–188.CrossRefMathSciNetGoogle Scholar
  37. Laborie, Ph. (2005). Complete MCS-based search: Application to resource constrained project scheduling, in: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI-05.Google Scholar
  38. Laborie, Ph. and Ghallab, M. (1995). Planning with sharable resource constraints, in: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI-95.Google Scholar
  39. Le Pape, C. (1994). Implementation of resource constraints in ilog schedule: A library for the development of constraint-based scheduling systems, Intelligent Systems Engineering, 3(2):55–66.CrossRefGoogle Scholar
  40. Lopez, P., Erschler, J., and Esquirol, P. (1992). Ordonnancement de tâches sous contraintes: une approche énergétique, R.A.I.R.O. APII, 26(5–6):453–481.Google Scholar
  41. Martello, S. and Toth, P. (1990). Lower bound and reduction procedure for the bin-packing problem, Discrete Applied Mathematics, 28:59–70.CrossRefMathSciNetGoogle Scholar
  42. Mingozzi, A., Maniezzo, V., Ricciardelli, S., and Bianco, L. (1998). An exact algorithm for the multiple resource-constrained project scheduling problem based on a new mathematical formulation, Management Science, 44:714–729.CrossRefGoogle Scholar
  43. Möhring, R. H., Schultz, A., Stork, F., and Uetz, M. (2003). Solving project scheduling problems by minimum cut computations, Management Science, 49:330–350.CrossRefGoogle Scholar
  44. Nuijten, W. (1994). Time and resource constrained scheduling: A constraint satisfaction approach. PhD thesis, Eindhoven University of Technology.Google Scholar
  45. Pritsker, A. A., Watters, L. J., and Wolfe, P. M. (1969). Multi-project scheduling with limited resources: a zero-one programming approach, Management Science, 16:93–108.Google Scholar
  46. Sankaran, J. K., Bricker, D. L., and Juang, S.-H. (1999). A strong fraction-nal cutting-plane algorithm for resource-constrained project scheduling, International Journal of Industrial Engineering: Applications and Practice, 6(2):99–111.Google Scholar
  47. Schwindt, Ch. (2005). Resource Allocation in Project Management, GOR-Publications.Google Scholar
  48. Tercinet, F., Lenté, Ch., and Néron, E. (2004). Mixed satisfiability tests for multiprocessor scheduling with release dates and deadlines, Operations Research Letters, 32(11):326–330.CrossRefMathSciNetGoogle Scholar
  49. Vilain, M. and Kautz, H. (1986). Constraint propagation algorithms for temporal reasoning, in: Proceedings of Fifth National Conference on Artificial Intelligence, pp. 377–382.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Emmanuel Néron
    • 1
  • Christian Artigues
    • 2
    • 6
  • Philippe Baptiste
    • 3
  • Jacques Carlier
    • 4
  • Jean Damay
    • 5
  • Sophie Demassey
    • 6
  • Philippe Laborie
    • 7
  1. 1.LI, Université François-Rabelais de ToursToursFrance
  2. 2.LI A - CER1Université d’Avignon el des Pays de VaucluseAvignon Cedex 9France
  3. 3.CNRS LIXEcole PolytechniquePalaiseauFrance
  4. 4.Centre de recherches de RoyallieuCNRS HeuDiaSyC, Université de Technologie de CompiègneCompiègneFrance
  5. 5.CNRS LIMOSUniversité Blaise PascalAubière CedexFrance
  6. 6.Centre de Recherche sur les TransportsUniversité de MontréalMontréalCanada
  7. 7.Ilog FranceGentilly CedexFrance

Personalised recommendations