Skip to main content

Isotropic Hardening and Critical State Theory

  • Chapter
Plasticity and Geotechnics

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 13))

  • 3536 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, T. and Oka, F. (1982). Constitutive equations for normally consolidated clay based on elasto-viscoplasticity. Soils and Foundations, Vol 22, 55–70.

    Google Scholar 

  • Allman, M.A. and Atkinson, J.H. (1992). Mechanical properties of reconstituted Bothkennar soil. Geotechnique, Vol 42, 289–301.

    Google Scholar 

  • Alonso, E.E., Gens, A. and Josa, A. (1990). A constitutive model for partially saturated soils. Geotechnique, Vol 40, 405–430.

    Google Scholar 

  • Atkinson, J.H. and Bransby, P.L. (1978). The Mechanics of Soils, McGraw-Hill.

    Google Scholar 

  • Bardet, J.P. (1986). Bounding surface plasticity model for sands. J. Eng. Mech, ASCE, Vol 112, 1198–1217.

    Google Scholar 

  • Been, K and Jefferies, M.G. (1985). A state parameter for sands. Geotechnique, Vol 35, 99–112.

    Google Scholar 

  • Been, K. and Jefferies, M.G. (1986). Reply: A state parameter for sands. Geotechnique, London, England, Vol 36, 127–132.

    Google Scholar 

  • Been, K. and Jefferies, M.G. (1993). Towards systematic CPT interpretation. Predictive Soil Mechanics, Wroth Memorial Symposium, Thomas Telford, London, 121–134.

    Google Scholar 

  • Been, K., Crooks, J.H.A., Becker, D.E. and Jefferies, M.G. (1986). The cone penetration test in sands: I, state parameter interpretation. Geotechnique, Vol 36, 239–249.

    Google Scholar 

  • Been, K., Crooks, J.H.A., Becker, D.E. and Jefferies, M.G. (1987). The cone penetration test in sands: II, general inference of state. Geotechnique, Vol 37, 285–299.

    Google Scholar 

  • Been, K., Jefferies, M.G. and Hachey, J.E. (1991). The critical state of sands. Geotechnique, Vol 37, 285–299.

    Google Scholar 

  • Bishop, A.W. (1972). Shear strength parameters for undisturbed and remoulded soil specimens. In: Stress Strain Behaviour of Soils, The Roscoe Memorial Symposium, Foulis, 3–58.

    Google Scholar 

  • Bishop, A.W. and Donald, I.B. (1961). The experimental study of partily saturated soils in the triaxial apparatus. Proc. 5th Conf ISSMFES, Vol 1, 13–21.

    Google Scholar 

  • Bishop, A.W. and Henkel, D.J. (1957). The Measurement of Soil Properties in the Triaxial Test, London, Edward Arnold Publishers Ltd.

    Google Scholar 

  • Bjerrum, L. (1967). Engineering geology of Norwegian normally consolidated marine clays as related to the settlements of buildings. Geotechnique, Vol 17, 83–118.

    Google Scholar 

  • Bolton, M. D. (1986). The strength and dilatancy of sands. Geotechnique,Vol36, 65–78.

    Google Scholar 

  • Borjia, R.I. and Kavazanjian, E. Jr (1985). A constitutive model for the stress-strain-time behaviour of wet clays. Geotechnique, Vol 35, 283–298.

    Google Scholar 

  • Brown, E.T. and Yu, H.S. (1988). A model for the ductile yield of porous rock. Int. J. Num. Analy. Meth. Geomech., Vol 12, 679–688.

    Article  Google Scholar 

  • Burland, J.B. (1990). On the compressibility and shear strength of natural clays. Geotechnique, Vol 40, 329–378.

    Google Scholar 

  • Carter, J.P., Booker, J.R. and Wroth, C.P. (1982). A critical state model for cyclic loading. Soil Mechanics-Transient and Cyclic Loads, Wiley, 219–252.

    Google Scholar 

  • Chandler, H.W. (1985). A plasticity theory without Drucker’s postulate for granular materials. J Mech. Phys. of Solids, Vol 33, 215–226.

    Article  Google Scholar 

  • Cole, E.R.L. (1967). The Behavior of Soils in the Simple Shear Apparatus. PhD Thesis, Department of Engineering, University of Cambridge, England.

    Google Scholar 

  • Coleman, J.D. (1962). Discussion: Stress strain relations for partly saturated soil. Geotechnique, Vol 12, 348–350.

    Google Scholar 

  • Collins, I.F. (1991). On the mechanics of state parameter models for sands. Computer Methods and Advances in Geomechanics (Editors: G. Beer, J.R. Booker and J.P. Carter), Vol 1, 593–599.

    Google Scholar 

  • Collins, I.F. and Kelly, P.A. (2002). A thermomechanical analysis of a family of soil models, Geotechnique., Vol 48,507–518.

    Google Scholar 

  • Collins, I.F., Pender, M.J. and Wan, Y. (1992). Cavity expansion in sands under drained loading conditions. Int. J. Num. Analy. Meth. Geomech., Vol 16, 3–23.

    Article  Google Scholar 

  • Coop, M.R. (1990). The mechanics of uncemented carbonate sands. Geotechnique, Vol 40, 607–626.

    Google Scholar 

  • Coop, M.R. and Atkinson, J. (1993). The mechanics of cemented carbonate sands. Geotechnique, Vol 43, 53–67.

    Google Scholar 

  • Coop, M.R. and Lee, I.K. (1993). The behavior of granular soils at elevated stresses. Predictive Soil Mechanics, Wroth Memorial Symposium, Thomas Telford, London, 186–198.

    Google Scholar 

  • Crouch R.S., Wolf, J.P. and Dafalias, Y.F. (1994). Unified critical state bounding surface plasticity model for soil. J. Eng Mech, ASCE, Vol 120, 2251–2270.

    Article  Google Scholar 

  • Cui, Y.J. and Delage, P. (1996). Yielding and plastic behaviour of an unsaturated compacted silt. Geotechnique, Vol 46, 405–430.

    Google Scholar 

  • Dafalias, Y.F. and Herrmann, L.R. (1980). Bounding surface formulation of soil plasticity. Soil Mechanics-Transient and Cyclic Loads, Wiley, Chapter 10, 253–282.

    Google Scholar 

  • Desai, C.S. (2001). Mechanics of Materials and Interfaces: The Disturbed State Concept, CRC Press, Boca Raton.

    Google Scholar 

  • Koiter, W.T. (1953). Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface, Quart. Appl. Math., Vol 11, 350–354.

    Google Scholar 

  • Kutter, B.L. and Sathialingam, N. (1992). Elastic-viscoplastic modelling of the rate-dependent behaviour of clays. Geotechnique, Vol 42, 427–441.

    Google Scholar 

  • Lade, P. V. (1972). The Stress-Strain and Strength Characteristics of Cohesionless Soils. PhD thesis, University of California.

    Google Scholar 

  • Lade, P. V. (1977). Elasto-plastic stress strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids and Structures, Vol 13, 1019–1035.

    Article  Google Scholar 

  • Lee, K.L. and Seed, H.B. (1967). Drained strength characteristics of sands. Proc. ASCE, Soil Mechanics and Foundations Division, Vol 93, 117–141.

    Google Scholar 

  • Leroueil, S. and Vaughan, P.R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique., Vol 40, 467–488.

    Google Scholar 

  • Liu, M.D. and Carter, J.P. (1999). Virgin compression of structured soils. Geotechnique, Vol 49, 43–57.

    Google Scholar 

  • McDowell, G.R. (2002). A simple non-associated flow model for sand, Granular Matter, Vol 4, 65–69.

    Article  Google Scholar 

  • McDowell, G.R. and Bolton, M.D. (1998). On the micromechanics of crushable aggregates, Geotechnique., Vol 48, 667–679.

    Google Scholar 

  • McDowell, G.R. and Hau, K.W. (2003). A simple non-associated three surface kinematic hardening model. Geotechnique., Vol 53, 433–437.

    Google Scholar 

  • Mroz, Z. (1963). Non-associated flow laws in plasticity. J. de Mecanique, Vol 2, 21–42.

    Google Scholar 

  • Muir Wood, D. (1990). Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press.

    Google Scholar 

  • Naylor, D.J. (1985). A continuous plasticity version of the critical state model. Int. J. Num. Meth. Eng., Vol 21, 1187–1204.

    Article  Google Scholar 

  • Nova, R. (1977). On the hardening of soils. Archiwum Mechaniki Stosowaney, Vol 29, 445–458.

    Google Scholar 

  • Nova, R. (1985). An engineering approach t shear band formation in geological media. Proc. 5th Int. Conf. on Num. Meth. Geomech, Nagoya, 509–516.

    Google Scholar 

  • Nova, R. and Wood, D.M. (1978). An experimental program to define yield function for sand. Soils and Foundations, Vol 18, 77–86.

    Google Scholar 

  • Nova, R. and Wood, D.M. (1979). A constitutive model for sand. Int. J. Num. Analy. Meth. Geomech., Vol 3, 255–278.

    Article  Google Scholar 

  • Novello, E.A. and Johnston, I.W. (1995). Geotechnical materials and the critical state, Geotechnique, Vol 45, 223–235.

    Google Scholar 

  • Ohmaki, S. (1982). Stress strain behaviour of anisotropically, normally consolidated cohesive soil. Proc. 1st Int. Symp. of NUMOG, Zurich, 250–269.

    Google Scholar 

  • Ohta, H. and Wroth, C.P. (1976). Anisotropy and stress reorientation in clay under load. Proc. 2nd Int. Conf. on Num. Meth. Geomech., Blacksburg, Vol 1, 319–328.

    Google Scholar 

  • Oka, F. (2005). Computational modelling of large deformation and the failure of geomaterials. Theme Lecture, Proc. 16th Conf. of ISSMGE, Japan., Vol 1, 47–94.

    Google Scholar 

  • Parry, R.H.G. (1956). Strength and Deformation of Clay. PhD Thesis, University of London.

    Google Scholar 

  • Parry, R.H.G. (1958). Correspondence on ‘On yielding of soils’, Geotechnique, Vol 8, 183–186.

    Google Scholar 

  • Pastor, M., Zienkiewicz, O.C. and Leung, K.H. (1985). Simple model for transient soil loading in earthquake analysis. Part 2: Non-associative models for sands. Int. J. Num. Analy. Meth. Geomech., Vol 9, 477–498.

    Article  Google Scholar 

  • Pender, M.J. (1978). A model for the behaviour of overconsolidated soil. Geotechnique, Vol 28, 1–25.

    Google Scholar 

  • Perzyna, P. (1963). The constitutive equations for working hardening and rate sensitive plastic materials, Proc. Vibration Problems, Warsaw., Vol 4, 281–290.

    Google Scholar 

  • Perzyna, P. (1966). Fundamental problems in viscoplasticity, Advances in Applied Mechanics, No 4, 244–368.

    Google Scholar 

  • Pietruszczak, S. and Stolle, D.F.E. (1985). Deformation of strain softening materials: Part 1. objectivity of finite element solutions based on conventional strain softening formulations. Comput. Geotech., Vol 1, 99–115.

    Article  Google Scholar 

  • Pietruszczak, S. and Mroz, Z. (1980). Numerical analysis of elastic-plastic compression of pillars accounting for material hardening and softening. Int. J. Rock Mech. Min. Sci, Vol 17, 199–207.

    Article  Google Scholar 

  • Pietruszczak, S. and Mroz, Z. (1981). Finite element analysis of deformation of strain softening materials. Int. J. Num. Meth. Eng., Vol 17, 327–334.

    Article  Google Scholar 

  • Poulos, S.J. (1981). The steady state of deformation. J. Geotech. Eng. Div., Vol 107, 553–562.

    Google Scholar 

  • Prevost, J.H. and Hoeg, K. (1975). Soil mechanics and plasticity analysis of strain softening. Geotechnique, Vol 25, 279–297.

    Google Scholar 

  • Roscoe, K.H. and Burland, J.B. (1968). On generalised stress strain behaviour of wet clay. In: Engineering Plasticity (edited by Heyman and Leckie), 535–609.

    Google Scholar 

  • Roscoe, K.H. and Poorooshasb, H.B. (1963). A fundamental principle of similarity in model tests for earth pressure problems. Proc. 2nd Asian Conference on Soil Mechanics, Vol 1, 134–140.

    Google Scholar 

  • Roscoe, K.H. and Schofield, A.N. (dy1963). Mechanical behaviour of an idealized wet clay. Proc. European Conf. on Soil Mechanics and Foundation Eng., Vol 1, 47–54.

    Google Scholar 

  • Roscoe, K.H., Schofield, A.N. and Thurairajah, A. (1963). Yielding of clays in states wetter than critical. Geotechnique, Vol 13, 211–240.

    Google Scholar 

  • Roscoe, K.H., Schofield, A.N. and Wroth, C.P. (1958). On the yielding of soils. Geotechnique, Vol 8, 22–52.

    Google Scholar 

  • Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. Roy. Soc. A. Vol 267, 500–527.

    Google Scholar 

  • Rowe, P.W. (1963). Stress-dilatancy, earth pressure and slopes. Proc. ASCE, Soil Mechanics and Foundations Division, Vol 89, 37–61.

    Google Scholar 

  • Rowe, P.W. (1972). Theoretical meaning and observed values of deformation parameters for soil. In: Stress-Strain Behaviour of Soils, Roscoe Memorial Symposium, Foulis, 143–194.

    Google Scholar 

  • Saada, A.S. and Bianchni, G. (1988). Constitutive Equations for Granular Non-Cohesive Soils. Balkema.

    Google Scholar 

  • Sasitharan, S., Robertson, P.K., Sego, D.C. and Morgenstern, N.R. (1994). State boundary surface for very loose sand and its practical applications. Can. Geotech. J., Vol 31, 321–334.

    Google Scholar 

  • Schnaid, F., Prietto, P.D.M. and Consoli, N.C.. (2001). Characterization of cemented sand in triaxial compression. J. Geotech. Geoenvil: Eng, ASCE, Vol 127, 857–868.

    Article  Google Scholar 

  • Schofield, A.N. and Wroth, C.P. (1968). Critical State Soil Mechanics, McGraw-Hill, London.

    Google Scholar 

  • Scott, R.F. (1988). Constitutive relations for soil: Present and future. In: Constitutive Equations for Granular Non-cohesive Soils (Eds, Saada and Bianchini), Balkema, 723–725.

    Google Scholar 

  • Sheng, D., Sloan, S.W. and Yu, H.S. (2000). Aspects of finite element implementation of critical state models. Comput. Mech., Vol 26, 185–196.

    Article  Google Scholar 

  • Sladen, J.A., D’Hollander, R.D.D. and Krahn, J. (1985). The liquefaction of sands, a collapse surface approach. Canadian Geotechnical Journal, Vol 22, 564–578.

    Article  Google Scholar 

  • Sladen, J.A. and Oswell, J.M. (1989). The behaviour of very loose sand in the triaxial compression test. Canadian Geotechnical Journal, Vol 26, 103–113.

    Article  Google Scholar 

  • Stroud, M.A. (1971). The Behavior of Sand at Low Stress Levels in the Simple Shear Apparatus. PhD Thesis, Department of Engineering, University of Cambridge, England.

    Google Scholar 

  • Tan, S.M. (2006). Constitutive and Numerical Modelling of Bonded Geomaterials, Forthcoming PhD Thesis, University of Nottingham, UK.

    Google Scholar 

  • Tatsuoka, F. and Ishihara, K. (1974). Yielding of sand in triaxial compression. Soils and Foundations, Vol 14, 6–76.

    Google Scholar 

  • Taylor, D.W. (1948). Fundamentals of Soil Mechanics, Wiley, New York.

    Google Scholar 

  • Vermeer, P.A. (1978). A double hardening model for sand. Geotechnique, Vol 28, 413–433.

    Google Scholar 

  • Vermeer, P.A. (1982). A simple shear band analysis using compliances. Proc. IUTAM Con. on Deformation and Failure of Granular Materials, Delft, 493–499.

    Google Scholar 

  • Wang, J. (2005). The Stress-Strain and Strength Characteristics of Portaway Sand, PhD Thesis, University of Nottingham, UK.

    Google Scholar 

  • Wheeler, S.J. and Sivakumar, V. (1995). An elasto-plastic critical state framework for unsaturated soil. Geotechnique, Vol 45, 35–53.

    Google Scholar 

  • Whittle, A.J. (1993). Evaluation of a constitutive model for overconsolidated clays. Geotechnique, Vol 43, 289–313.

    Google Scholar 

  • Wilde, P. (1977). Two-invariants dependent model of granular media. Archives Mech, Vol 29, 799–809.

    Google Scholar 

  • Willam, K., Pramono, E. and Sture, S. (1987). Uniqueness and stability issues of strain softening computations. Constitutive Laws for Engineering Materials: Theory and Applications, Elsevier Science Publishing Co. Inc., Vol 1, 249–260.

    Google Scholar 

  • Wroth, C.P. (1973). A brief review of the application of plasticity to soil mechanics, In: Plasticity and Soil Mechanics, (Editor: A.C. Palmer), 1–11.

    Google Scholar 

  • Wroth, C.P. and Bassett, N. (1965). A stress-strain relationship for the shearing behavior of a sand. Geotechnique, Vol 15, 32–56.

    Article  Google Scholar 

  • Wroth, C.P. and Houlsby, G.T. (1985). Soil mechanics-property characterization and analysis procedures. Proc. 11th ICSMFE, San Francisco, Vol 1, 1–57.

    Google Scholar 

  • Yin, J.H. and Graham, J. (1999). Elastic visco-plastic modelling of the time dependenet stress-strain behaviour of soils. Can. Geotech. J., Vol 36, 736–745.

    Article  Google Scholar 

  • Yu, H.S. (1994). State parameter from self-boring pressuremeter tests in sand. J. Geotech. Eng., ASCE, Vol. 120, No. 12, 2118–2135.

    Article  Google Scholar 

  • Yu, H.S. (1995). A unified critical state model for clay and sand. Civil Engineering Research Report No 112.08.1995, University of Newcastle, NSW.

    Google Scholar 

  • Yu, H.S. (1996). Interpretation of pressuremeter unloading tests in sands. Geotechnique, Vol 46, 17–34.

    Google Scholar 

  • Yu, H.S. (1998). CASM: A unified state parameter model for clay and sand. Int. J. Num. Analy. Meth. Geomech., Vol 22, 621–653.

    Article  Google Scholar 

  • Yu, H.S. and Khong, C.D. (2002). Application of a unified critical state model in finite element analysis, Proc. 3rd Conf. on 3D Finite Elements for Pavement Analysis Design and Research, Amsterdam, 253–267.

    Google Scholar 

  • Yu, H.S., Khong, C.D., Wang, J. and Zhang, G. (2005). Experimental evaluation and extension of a simple critical state model for sand. Granular Matter, Vol 7, 213–225.

    Article  Google Scholar 

  • Zienkiewicz, O.C. and Naylor, D.J. (1973). Finite element studies of soils and porous media. Lectures on Finite Elements in Continuum Mechanics (Editors: J.T. Oden and E.R. de Arantes), UAH Press, 459–493.

    Google Scholar 

  • Zienkiewicz, O.C. and Pande, G.N. (1977). Some useful forms of isotropic yield surfaces for soil and rock mechanics. Finite Elements in Geomechanics, (Editor: G. Gudehus), Chapter 5, 179–198.

    Google Scholar 

  • Zienkiewicz, O.C., Leung, K.H. and Pastor, M. (1985). Simple model for transient soil loading in earthquake analysis. Part 1: Basic model and its application. Int. J. Num. Analy. Meth. Geomech., Vol9,453–476.

    Article  Google Scholar 

  • Zytynski, M., Randolph, M.F., Nova, R. and Wroth, C.P. (1978). On modelling the unloading-reloading behaviour of soils. Int. J. Num. Analy. Meth. Geomech., Vol 2, 87–93.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Isotropic Hardening and Critical State Theory. In: Plasticity and Geotechnics. Advances in Mechanics and Mathematics, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33599-5_6

Download citation

Publish with us

Policies and ethics