Perfect Plasticity

Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 13)


Yield Surface Yield Criterion Earth Pressure Undrained Shear Strength Dilation Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolton, M.D. (1986). The strength and dilatancy of sands, Geotechnique, Vol 36, 65–78.CrossRefGoogle Scholar
  2. Borja, R., Tamagnini, C. and Amorosi, A. (1997). Coupling plasticity and energy conserving elasticity models for clays. J. Geotech. Geoenviron. Eng., ASCE, Vol 123, 948–957.CrossRefGoogle Scholar
  3. Chen, W.E and Saleeb, A.F. (1982). Constitutive Equations for Engineering Materials: Vol I-Elasticity and Modelling, Wiley, New York.Google Scholar
  4. Coulomb, C.A. (1773). Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs a l’architecture, Mem. pres. par div. savants, Vol 7, 343–382.Google Scholar
  5. de Saint-Vernant, B (1870). Memoire sur l’establissement des equations differentielles des mouvements interieurs operas dans les corps solides ductiles au dela des limites ou l’elasticite pourrait les remener a leur premier etat, C.R. Acas. Sci. (Paris), Vol 70, 473–480.Google Scholar
  6. Drucker, D.C. and Prager, W. (1952). Soil mechanics and plastic analysis forlimit design, Quart. Appl. Math., Vol 10, 157–165.Google Scholar
  7. Drucker, D.C., Prager, W. and Greenberg, H.J. (1952). Extended limit design theorems for continuous media, Quart. Appl. Math., Vol 10, 381–389.Google Scholar
  8. Hill, R. (1950). The Mathematical Theory of Plasticity, Clarendon Press, Oxford.Google Scholar
  9. Hill, R. (1951). On the state of stress in a plastic-rigid body at the yield point, Phil. Mag., Vol 42, 868–875.Google Scholar
  10. Hoek, E. and Brown, E.T. (1980). Underground Excavation in Rock, The Institution of Mining and Metallurgy, London.Google Scholar
  11. Houlsby, G.T. (1985). The use of a variable shear modulus in elastic-plastic models of clays. Comput. Geotech., Vol 1, 3–13.CrossRefGoogle Scholar
  12. Lade, P.V. and Duncan, J.M. (1975). Elastioplastuc stress strain theory for cohesionless soil. J. Geotech. Eng. Div., ASCE, Vol 101, 1037–1053.Google Scholar
  13. Levy, M. (1870). Memoire sur les equations generales des mouvements interieurs des corps solides ductiles au dela des limites ou l’elasticite pourrait les rammener a leur premier etat, C.R. Acas. Sci. (Paris), Vol 70, 1323–1325.Google Scholar
  14. Matsuoka, H. and Nakai, T. (1974). Stress deformation and strength chasracteristics of soil under three different principal stresses, Proc. Japan. Soc. Civil Enginners, Vol 232, 59.Google Scholar
  15. Matsuoka, H. and Nakai, T. (1982). A new failure criterion for soils in three-dimensional stresses, Proc. IUTAM Symp. On Deformation and Failure of Granular Materials, (Editors: P.A. Vermeer and H.J. Luger), 253–263.Google Scholar
  16. Nayak, G.C. and Zienkiewicz, O.C. (1972). Elasto-plastic stress analysis: a generalization for various constitutive relations including strain softening. Int. J. Num. Meth. Eng., Vol 5, 113–135.CrossRefGoogle Scholar
  17. Pan, X.D. and Hudson, J.A. (1988). Plane strain analysis in modelling three-dimensional tunnel excavations. Int. J. Rock Mech. Min. Sci., Vol 25, 331–337.CrossRefGoogle Scholar
  18. Prager, W. (1955). The theory of plasticity-a survey of recent achievements, Proc. Inst. Mech. Eng., London, 3–19.Google Scholar
  19. Rankine, W.J. (1857). On the stability of loose earth. Phil. Trans. R. Soc., Vol 147, 9–27.Google Scholar
  20. Rowe, P.W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. A, Vol 267, 500–527.Google Scholar
  21. Sloan, S.W. and Booker, J.R. (1984). Removal of singularities in Tresca and Mohr-Coulomb yield functions. Commun. Appl. Num. Meth., Vol 2, 173–179.CrossRefGoogle Scholar
  22. Tresca, H. (1864). Sur I’ecoulement des corps solides soumis a de fortes pressions, C.R. Acas. Sci. (Paris), Vol 59, 754.Google Scholar
  23. Tresca, H. (1868). Memoire sur l’ecoulement des corps solides, Mem. pres. par div. savants, Vol 18, 733–799.Google Scholar
  24. von Mises, R. (1913). Mechanik der festen Korper im plastisch deformation, Zustand. Nachr: Ges. Wiss. Gottingen, 582.Google Scholar
  25. Wroth, C.P. (1973). A brief review of the application of plasticity to soil mechanics, In: Plasticity and Soil Mechanics, (Editor: A.C. Palmer), 1–11.Google Scholar
  26. Yu, H.S. (1990). Cavity Expansion Theory and Its Application to the Analysis of Pressuremeters, DPhil Thesis, University of Oxford.Google Scholar
  27. Yu, H.S. (1994). A closed form solution of stiffness matrix for Tresca and Mohr-Coulomb plasticity models. Comput. Struct., Vol 53, 755–757.CrossRefGoogle Scholar
  28. Zytynski, M., Randolph, M.F., Nova, R. and Wroth, C.P. (1978). On modelling the unloading-reloading behaviour of soils. Int. J. Num. Analy. Meth. Geomech., Vol 2, 87–93.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Personalised recommendations