Introduction

Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 13)

Keywords

Granular Material Discrete Element Method Plasticity Theory Discrete Element Method Simulation Metal Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, E.T. (1987). Analytical and Computational Methods in Engineering Rock Mechanics, “Expanded version of the lectures given at the John Bray Colloquium”, Allen & Unwin, London.Google Scholar
  2. Burland, J.B. (1989). Small is beautiful: the stiffness of soils at small strains, Can. Geotech. J., Vol 26, 499–516.CrossRefGoogle Scholar
  3. Carter, J.P., Desai, C.S., Potts, D.M., Schweiger, H.F. and Sloan, S.W. (2000). Computing and computer modelling in geotechnical engineering, Proc. of GeoEng2000, Vol I, 1157–1252.Google Scholar
  4. Chandler, H.W. (1985). A plasticity theory without Drucker’s postulate, suitable for granular materials, J. Mech. Phys. Solids, Vol 33, 215–226.CrossRefGoogle Scholar
  5. Chen, W.F. (1975). Limit Analysis and Soil Plasticity, Elsevier, Amsterdam.Google Scholar
  6. Chen, W.F. and Mizuno, E. (1990). Nonlinear Analysis in Soil Mechanics. Elsevier, Amsterdam.Google Scholar
  7. Collins, I.F. and Houlsby, G.T. (1997). Application of thermomechanical principles to the modelling of geotechnical materials, Proc. R. Soc. A., Vol 453, 1975–2001.CrossRefGoogle Scholar
  8. Cundall, P.A. (2000). A discontinuous future for numerical modelling in geomechanics, Proc. ICE: Geotech. Eng., Vol 149, 41–47.CrossRefGoogle Scholar
  9. Cundall, P.A. and Strack, O.D.L. (1979). A discrete numerical model for granular assemblies, Geotechnique., Vol 29, 47–65.Google Scholar
  10. Dafalias, Y.F. and Popov, E.P. (1975). A model of nonlinearly hardening materials for complex loadings, Acta Mech., Vol 21, 173–192.CrossRefGoogle Scholar
  11. Davis, E.H. (1968). Theories of plasticity and the failure of soil masses, In: Soil Mechanics: Selected Topics, (Editor: I. K. Lee), Butterworths, London, 341–380.Google Scholar
  12. Davis, R.O. and Selvadurai, A.P.S. (1996). Elasticity and Geomechanics, Cambridge University Press.Google Scholar
  13. de Josselin de Jong, G. (1971). The double sliding, free rotating model for granular assemblies, Geotechnique., Vol 21, 155–162.Google Scholar
  14. de Saint-Venant, B (1870). Memoire sur l’etablissement des equations differentielles des mouvements interieurs operes dans les corps solides ductiles au dela des limites ou I’elasticite pourrait les ramener a leur premier etat, C.R. Acas. Sci. (Paris), Vol 70, 473–480.Google Scholar
  15. Drucker, D.C. (1950). Stress-strain relations in the plastic range: a survey of the theory and experiment, Report for OfJice of Naval Research Contract N7-onr-358, December, Brown University.Google Scholar
  16. Drucker, D.C. (1952). A more fundamental approach to plastic stress-strain relations, In: Proc. 1st US Nat. Congl: Appl. Mech., ASME, New York, 487–491.Google Scholar
  17. Drucker, D.C. (1958). The definition of a stable inelastic material,J. Appl. Mech., ASME, Vol 26, 101–106.Google Scholar
  18. Drucker, D.C., Gibson, R.E. and Henkel, D.J. (1957). Soil mechanics and working hardening theories of plasticity, Trans. ASCE, Vol 122, 338–346.Google Scholar
  19. Einav, I. (2004). Thermomechnical relations between stress space and strain space models, Geotechnique, Vol 54, 315–318.Google Scholar
  20. Gens, A. and Potts, D.M. (1988). Critical state models in computational geomechanics. Eng. Comput., Vol 5, 178–197.Google Scholar
  21. Green, A.E. (1956). Hypo-elasticity and plasticity, Proc. R. Soc. A., Vol 234, 46–59.Google Scholar
  22. Harris, D. (1995). A unified formulation for plasticity models of granular and other materials, Proc. R. Soc. A., Vol 450, 37–49.CrossRefGoogle Scholar
  23. Hill, R. (1948). A variational principle of maximum plastic work in classical plasticity, Q.J. Mech. Appl. Math., Vol 1, 18–28.CrossRefGoogle Scholar
  24. Hill, R. (1950). The Mathematical Theory of Plasticity, Clarendon Press, Oxford.Google Scholar
  25. Houlsby, G.T. (1982). A derivation of the small-strain incremental theory of plasticity from thermodynamics, Proc. IUTAM Conf. on Deformation and Failure of Granular Materials, Delft, 109–118.Google Scholar
  26. Iwan, W.D. (1967). On a class of models for the yielding behaviour of continuous and composite systems, J. Appl. Mech., Vol 34, 612–617.Google Scholar
  27. Jamiolkowski, M., Ladd, C.C., Germaine, J.T. and Lancellotta, R. (1985). New developments in field and laboratory testing of soils, Theme Lecture, Proc. 11th Int. Conf. on Soil Mech. Found. Eng., San Francisco, Vol l, 57–153, Balkema.Google Scholar
  28. Jiang, M.J., Harris, D. and Yu, H.S. (2005). Kinematic models for non-coaxial granular materials: Part I and Part II, Int. J. Num. Anal. Meth. Geomech., Vol 29, 643–689.CrossRefGoogle Scholar
  29. Jiang, M.J. and Yu, H.S. (2006). Application of the discrete element method to modern geomechanics, In: Modern Trends in Geomechanics, (Editors: W. Wu and H.S. Yu), Springer.Google Scholar
  30. Koiter, W.T. (1960). General theorems for elastic-plastic solids, In: Progress in Solid Mechanics, (Editors: I.N. Sneddon and R. Hill), Vol 1, 167–221.Google Scholar
  31. Kolymbas, D. (1991). An outline of hypoplasticity, Arch. Appl. Mech., Vol 61, 143–151.Google Scholar
  32. Krieg, R.D. (1975). A practical two-surface plasticity theory, J. Appl. Mech., Vol 42, 641–646.Google Scholar
  33. Maugin, G.A. (1992). The Thermomechanics of Plasticity and Fracture, Cambridge University Press.Google Scholar
  34. McDowell, G.R. and Bolton, M.D. (1998). On the micromechanics of crushable aggregates, Geotechnique, Vol 48, 667–679.Google Scholar
  35. McDowell, G.R. and Harireche, 0. (2002). Discrete elment modelling of yielding and nomral compression of sand, Geotechnique, Vol 52, 299–304.CrossRefGoogle Scholar
  36. Melan, E (1938). Zur plastizitat des raumlichen Kontinuums, Ing. Arch., Vol 9, 116–125.CrossRefGoogle Scholar
  37. Mitchell, J.K. (1993). Fundamentals of Soil Behaviour, 2nd edition, John Wiley & Sons, New York.Google Scholar
  38. Mroz, Z (1967). On the description of anisotropic hardening, J. Mech. Phys. Solids., Vol 15, 163–175.CrossRefGoogle Scholar
  39. Nadai, A. (1950). Theory of Flow and Fracture of Solids, 2nd Edition, McGraw-Hill, New York.Google Scholar
  40. Naylor, D.J., Pande, G.N., Simpson, B. and Tabb, R. (1981). Finite Elements in Geotechnical Engineering, Pineridge Press, Swansea.Google Scholar
  41. Naghdi, P.M. (1960). Stress-strain relations in plasticity and thermoplasticity, In: Plasticity, (Editors: E.H. Lee and P.S. Symonds), Pergamon Press, 121–169.Google Scholar
  42. Naghdi, P.M. and Trapp, J.A. (1975). The significance of formulating plasticity theory with reference to loading surfaces in strain space. Int. J. Eng. Sci., Vol 13, 785–797.CrossRefGoogle Scholar
  43. Prager, W. (1955). The theory of plasticity-a survey of recent achievements, Proc. Inst. Mech. Eng., London, 3–19.Google Scholar
  44. Potts, D. M. and Zdravkovic, L. (1999). Finite Element Analysis in Geotechnical Engineering: Theory, Thomas Telford, London.Google Scholar
  45. Poulos, H.G. and Davis, E.H. (1974). Elastic Solutions for Soil and Rock Mechanics, John Wiley, New York.Google Scholar
  46. Roscoe, K.H. and Burland, J.B. (1968). On generalised stress strain behaviour of wet clay. In: Engineering Plasticity (edited by Heyman and Leckie), 535–609.Google Scholar
  47. Roscoe, K.H., Schofield, A.N. and Wroth, C.P. (1958). On yielding of soils, Geotechnique., Vol 8, 28.Google Scholar
  48. Rothenburg, L. and Bathurst, R.J. (1992). Micromechanical features of granular assemblies with planar elliptical particles, Geotechnique, Vol 42, 79–95.CrossRefGoogle Scholar
  49. Rudnicki, J.W. and Rice, J.R. (1975). Conditions for the localisation of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids., Vol 23, 371–394.CrossRefGoogle Scholar
  50. Salencon, J. (1977). Applications of the Theory of Plasticity in Soil Mechanics, Wiley, Chichester.Google Scholar
  51. Schofield, A.N. and Wroth, C.P. (1968). Critical State Soil Mechanics, McGraw-Hill, London.Google Scholar
  52. Simpson, B. (1992). Retaining structure: displacement and design, Geotechnique, Vol 42, 539–576.Google Scholar
  53. Sloan, S.W. and Randolph, M.F. (1982). Numerical prediction of collapse loads using finite element methods. Int. J. Num. Analy. Meth. Geomech., Vol 6, 47–76.CrossRefGoogle Scholar
  54. Sokolovskii, V.V. (1965). Statics of Granular Media, Pergamon, Oxford.Google Scholar
  55. Spencer, A.J.M. (1964). A theory of the kinematics of ideal soils under plane strain conditions, J. Mech. Phys. Solids., Vol 12, 337–351.CrossRefGoogle Scholar
  56. Spencer, A.J.M. (1980). Continuum Mechanics. Dover Publications, New York.Google Scholar
  57. Terzaghi, K. (1943). Theoretical Soil Mechanics, Wiley, New York.Google Scholar
  58. Thornton, C. (2000). Microscopic approach contributions to constitutive modelling, In: Constitutive Modelling of Granular Materials, (Editor: D. Kolymbas), Springer 193–208.Google Scholar
  59. Valanis, K.C. (1971). A theory of viscoplasticity without a yield surface, Arch. Mech., Vol 23, 517–534.Google Scholar
  60. von Mises, R (1928). Mechanik der plastischen Formaenderung von Kristallen, Z. angew. Math. Mech., Vol 8, 161–185.Google Scholar
  61. Wroth, C.P. and Houlsby, G.T. (1985). Soil mechanics-property characterisation and analysis procedures, Proc. 11th Int Conf of ISSMFE, Theme Lecture, Vol l, 1–55.Google Scholar
  62. Yang, Y. and Yu, H.S. (2006a). Numerical simulations of simple shear with non-coaxial soil models, Int. J. Num. Analy. Meth. Geomech., Vol 30, 1–19.CrossRefGoogle Scholar
  63. Yang, Y. and Yu, PH.S. (2006b). A non-coaxial critical state soil model and its application to simple shear simulations, Int. J. Num. Analy. Meth. Geomech. (in press).Google Scholar
  64. Yoder, P.J. and Iwan, W.D. (1981). On the formulation of strain-space plasticity with multiple loading surfaces. J. Appl. Mech., Vol 48, 773–778.CrossRefGoogle Scholar
  65. Yu, H.S. (1998). CASM: A unified state parameter model for clay and sand. Int. J. Num. Analy. Meth. Geomech., Vol 22, 621–653.CrossRefGoogle Scholar
  66. Yu, H.S. (2000a). Cavity Expansion Methods in Geomechanics, Kluwer Academic Publishers.Google Scholar
  67. Yu, H.S. (2000b). Theoretical Methods in Geomechanics, DSc Thesis, University of Newcastle, Australia.Google Scholar
  68. Yu, H.S. and Yuan, X. (2005). The importance of accounting for non-coaxial behaviour in modelling soil-structure interaction, Proc. 11th Int Con$ of ZACMAG, (Editors: G Barla and M. Barla), Patron Editore, Invited Issue Paper, Vol 4, 709–718.Google Scholar
  69. Yu, H.S. and Yuan, X. (2006). On a class of non-coaxial plasticity models for granular soils, Proc. R. Soc. A., Vol 462, 725–748.CrossRefGoogle Scholar
  70. Zheng, Y., Chu, J. and Xu, Z. (1986). Strain space formulation of the elasto-plastic theory and its finite element implementation. Comput. Geotech. Vol 2, 373–388.CrossRefGoogle Scholar
  71. Ziegler, H. (1959). A modification of Prager’s hardening rule. Quart. Appl. Math. Vol 17, 55.Google Scholar
  72. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A. and Shiomi, T. (1998). Computational Geomechanics, Wiley.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Personalised recommendations