Noise in Gene Regulatory Networks

  • Juan M. PedrazaEmail author
  • Alexander van Oudenaarden
Part of the Topics in Biomedical Engineering International Book Series book series (ITBE)


Gene expression is based on biochemical processes that are inherently stochastic. The resulting fluctuations in mRNA and protein levels can sometimes be exploited but generally need to be controlled for reliable function of regulatory networks. From models of these biochemical processes it is possible to obtain analytical expressions for the stochastic properties of the resulting distributions of expression levels. We present a review of the two main analytical techniques for modeling stochastic gene expression.


Master Equation Gene Regulatory Network Noise Term Macroscopic Equation Eukaryotic Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    Ptashne M. 1992. A genetic switch: phage lambda and higher organisms. Cell Press, Cambridge.Google Scholar
  2. 2.
    Arkin A, Ross J, McAdams HH. 1998. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149:1633–1648.PubMedGoogle Scholar
  3. 3.
    van de Putte P, Goosen N. 1992. DNA inversions in phages and bacteria. Trends Genet 8:457–462.PubMedGoogle Scholar
  4. 4.
    von Dassow G, Meir E, Munro EM, Odell GM. 2000. The segment polarity network is a robust developmental module. Nature 406:188–192.CrossRefGoogle Scholar
  5. 5.
    Becskei A, Serrano L. 2000. Engineering stability in gene networks by autoregulation. Nature 405:590–593.PubMedCrossRefGoogle Scholar
  6. 6.
    Ko MS, Nakauchi H, Takahashi N. 1990. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J 9:2835–2842.PubMedGoogle Scholar
  7. 7.
    Berg OG. 1978. A model for statistical fluctuations of protein number in a microbial population. J Theor Biol 71:587–603.PubMedCrossRefGoogle Scholar
  8. 8.
    McAdams HH, Arkin A. 19 1977. Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94:814–819.CrossRefGoogle Scholar
  9. 9.
    Thattai M, van Oudenaarden A. 2001. Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci USA 98:8614–8619.PubMedCrossRefGoogle Scholar
  10. 10.
    Kierzek AM, Zaim J, Zielenkiewicz P. 2001. The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. J Biol Chem 276:8165–8172.PubMedCrossRefGoogle Scholar
  11. 11.
    Kepler TB, Elston TC. 2001. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 81:3116–3136.PubMedGoogle Scholar
  12. 12.
    Swain PS, Elowitz MB, Siggia ED. 2002. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 99:12795–12800.PubMedCrossRefGoogle Scholar
  13. 13.
    Paulsson J. 2004. Summing up the noise in gene networks. Nature 427:415–418.PubMedCrossRefGoogle Scholar
  14. 14.
    Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. 2002. Regulation of noise in the expression of a single gene. Nature Genet 31:69–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science 297:1183–1186.PubMedCrossRefGoogle Scholar
  16. 16.
    Blake WJ, Kærn M, Cantor CR, Collins JJ. 2003. Noise in eukaryotic gene expression. Nature 422:633–637.PubMedCrossRefGoogle Scholar
  17. 17.
    Raser J, O’Shea, EK. 2004. Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814.PubMedCrossRefGoogle Scholar
  18. 18.
    Rao CV, Wolf DM, Arkin AP. 2002. Control, exploitation and tolerance of intracellular noise. Nature 420:231–237.PubMedCrossRefGoogle Scholar
  19. 19.
    van Kampen NG. 1992. Stochastic processes in physics and chemistry. North-Holland, Amsterdam.Google Scholar
  20. 20.
    Thattai M, van Oudenaarden A. 2002. Attenuation of noise in ultrasensitive signaling cascades. Biophys J 82:2943–2950.PubMedCrossRefGoogle Scholar
  21. 21.
    Hasty J, Pradines J, Dolnik M, Collins JJ. 2000. Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA 97:2075–2080.PubMedCrossRefGoogle Scholar
  22. 22.
    Øksendal BK. 1998. Stochastic differential equations: an introduction with applications. Springer, New York.Google Scholar
  23. 23.
    Rowe HE. 1965. Signals and noise in communication systems. van Nostrand, Princeton.Google Scholar
  24. 24.
    Gillespie DT. 2001. Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115:1716–1733.CrossRefGoogle Scholar
  25. 25.
    Gibson MA, Bruck J. 2000. Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104:1876–1889.CrossRefGoogle Scholar
  26. 26.
    Gillespie DT. 1977. Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361.CrossRefGoogle Scholar
  27. 27.
    Magee JA, Abdulkadir SA, Milbrandt J. 2003. Haploinsufficiency at the Nkx3.1 locus: a paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell 3:273–283.PubMedCrossRefGoogle Scholar
  28. 28.
    McAdams HH, Arkin A. 2000. Towards a circuit engineering discipline. Curr Biol 10:R318–R320.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Inc. 2006

Authors and Affiliations

  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridge

Personalised recommendations