The Architecture of Biological Networks

  • Stefan Wuchty
  • Erszébet Ravasz
  • Albert-László BarabásiEmail author
Part of the Topics in Biomedical Engineering International Book Series book series (ITBE)


An ambitious goal of contemporary biological research is the elucidation of the structure and functions of networks that constitute cells and organisms. In biological systems, networks appear in many different disguises, ranging from protein interactions to metabolic networks. The emergence of these networks is driven by self-organizing processes that are governed by simple but generic laws. While unraveling the complex and interwoven systems of different interacting units, it has become clear that the topology of networks of different biological origin share the same characteristics on the large scale. In this chapter, we survey the most prominent characteristics of biological networks, focusing on the emergence of the scale-free architecture and the hierarchical arrangement of modules.


Metabolic Network Random Graph Degree Distribution Cluster Coefficient Biological Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    Vázquez A, Pastor-Satorras R, Vespignani A. 2002. Large-scale topological and dynamical properties of the internet. Phys Rev E 65:066130.CrossRefGoogle Scholar
  2. 2.
    Albert R, Jeong H., Barabási A-L. 1999. Diameter of the world-wide web. Nature 401:130–131.CrossRefGoogle Scholar
  3. 3.
    Albert R, Jeong H, Barabási A-L. 2000. Attack and error tolerance of complex networks. Nature 406:378.CrossRefGoogle Scholar
  4. 4.
    Apic G, Gough J, Teichmann S. 2001. Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J Mol Biol 310:311–325.PubMedCrossRefGoogle Scholar
  5. 5.
    Barabási A-L, Albert R. 1999. Emergence of scaling in random networks. Science 286:509–512.CrossRefGoogle Scholar
  6. 6.
    Barabási A-L, Albert R, Jeong H. 1999. Mean-field theory for scale-free random networks. Physica A 272:173–187.CrossRefGoogle Scholar
  7. 7.
    Barabási A-L, Ravasz E., Vicsek T. 2001. Deterministic scale-free networks. Physica A 299:559–564.CrossRefGoogle Scholar
  8. 8.
    Bollobás B. 1985. Random graphs. Academic Press, London.Google Scholar
  9. 9.
    Broder A, Kumar R, Maghoul F, Raghavan P, Rajalopagan S, Stata R, Tomkins A, Wiener J. 2000. Graph structure in the web. Comput Netw 33:309–320.CrossRefGoogle Scholar
  10. 10.
    Burge C. 2001. Chipping away at the transcriptome. Nature Genet 27:232–234.PubMedCrossRefGoogle Scholar
  11. 11.
    Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis P, Hermus M-C, van Asperen R, Boon K, Voute PA, Heisterkamp S. 2001. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291:1289–1292.PubMedCrossRefGoogle Scholar
  12. 12.
    Dorogovtsev SN, Goltsev AV, Mendes JFF. 2002. Pseudofractal scale-free web. Phys Rev E 65:066122.CrossRefGoogle Scholar
  13. 13.
    Erdös P, Rényi A. 1960. On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61.Google Scholar
  14. 14.
    Faloutsos M, Faloutsos P, Faloutsos C. 1999. On power-law relationships of the internet topology. Comput Commun Rev 29:251–262.CrossRefGoogle Scholar
  15. 15.
    Fell D, Wagner A. 2000. The small world of metabolism. Nature Biotech 189:1121–1122.CrossRefGoogle Scholar
  16. 16.
    Flajolet M, Rotondo G, Daviet L, Bergametti F, Inchauspe G, Tiollais P, Transy C, Legrain P. 2000. A genomic approach to the hepatitis C virus. Gene 242:369–379.PubMedCrossRefGoogle Scholar
  17. 17.
    Gavin A, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J, Michon AM. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147.PubMedCrossRefGoogle Scholar
  18. 18.
    Girvan M, Newman M. 2002. Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826.PubMedCrossRefGoogle Scholar
  19. 19.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW. 1999. From molecular to modular cell biology. Nature 402:C47–C52.PubMedCrossRefGoogle Scholar
  20. 20.
    Ho Y, Gruhler A, Heilbut A, Bader G, Moore L, Adams S-L, Millar A, Taylor P, Bennett K, Boutillier K. 2002. Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183.PubMedCrossRefGoogle Scholar
  21. 21.
    Holme P, Huss M, Jeong H. 2003. Subnetwork hierarchies in biochemical pathways. Bioinformatics 19:532–538.PubMedCrossRefGoogle Scholar
  22. 22.
    Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. 2001. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574.PubMedCrossRefGoogle Scholar
  23. 23.
    Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K, Kuhara S, Sakaki Y. 2000. Towards a protein—protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci USA 97:1143–1147.PubMedCrossRefGoogle Scholar
  24. 24.
    Jeong H, Mason S, Barabási A-L, Oltvai ZN. 2001. Lethality and centrality in protein networks. Nature 411:41–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Jeong H, Oltvai ZN, Barabási A-L. 2003. Prediction of protein essentiality based on genomic data. ComPlexUs 1:19–28.CrossRefGoogle Scholar
  26. 26.
    Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L. 2000. The large-scale organization of metabolic networks. Nature 407:651–654.PubMedCrossRefGoogle Scholar
  27. 27.
    Jung S, Kim S, Kahng B. 2002. A geometric fractal growth model for scale free networks. Phys Rev E 65:056101.CrossRefGoogle Scholar
  28. 28.
    Karp PD, Riley M, Saier M, Paulsen I, Paley S, Pellegrini-Toole A. 2000. The EcoCyc and MetaCyc databases. Nucleic Acids Res 28:56–59.PubMedCrossRefGoogle Scholar
  29. 29.
    Kochen M, ed. 1989. The small world. Ablex, Norwood, NJ.Google Scholar
  30. 30.
    Kohn K. 1999. Molecular interaction map of mammalian cell-cycle control and dna repair systems. Mol Biol Cell 10:2703–2734.PubMedGoogle Scholar
  31. 31.
    Lauffenburger D. 2000. Cell signaling pathways as control modules: complexity for simplicity. Proc Natl Acad Sci USA 97:5031–5033.PubMedCrossRefGoogle Scholar
  32. 32.
    Lawrence S, Giles CL. 1999. Accessibility of information on the web. Nature 400:107–109.PubMedCrossRefGoogle Scholar
  33. 33.
    Liljeros F, Edling C, Amaral L, Aberg Y. 2001. The web of human sexual contacts. Nature 411:907–908.PubMedCrossRefGoogle Scholar
  34. 34.
    McGraith S, Holtzman T, Moss B, Fields S. 2000. Genome-wide analysis of vaccinia virus protein-protein interactions. Proc Natl Acad Sci USA 97:4879–4884.CrossRefGoogle Scholar
  35. 35.
    Mewes H, Frishman D, Gruber C, Geier B, Haase D, Kaps A, Lemcke K, Mannhaupt G, Pfeiffer F. 2000. MIPS: a database for genomes and protein sequences. Nucleic Acids Res 28:37–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Milgram S. 1967. The small-world problem. Psych Today 2:60–67.Google Scholar
  37. 37.
    Newman M. 2001. The structure of scientific collaboration networks. Proc Natl Acad Sci USA 98:404–409.PubMedCrossRefGoogle Scholar
  38. 38.
    Oltvai ZN, Barabási A-L. 2002. Life’s complexity pyramid. Science 298:763–764.PubMedCrossRefGoogle Scholar
  39. 39.
    Overbeek R, Larsen N, Pusch G, D’Souza M, Selkov Jr E, Kyrpides N, Fonstein M, Maltsev N, Selkov E. 2000. WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res 28:123–125.PubMedCrossRefGoogle Scholar
  40. 40.
    Pandey A, Mann M. 2000. Protemics to study genes and genomes. Nature 405:837–846.PubMedCrossRefGoogle Scholar
  41. 41.
    Park J, Lappe M, Teichmann A. 2001. Mapping protein family interations: intramolecular and intermolecular protein family interaction repertoires in the pdb and yeast. J Mol Biol 307:929–938.PubMedCrossRefGoogle Scholar
  42. 42.
    Pastor-Satorras R, Smith E, Solé R. 2002. Evolving protein interaction networks through gene duplication. Santa Fe Working Paper 02-02-008.Google Scholar
  43. 43.
    Pastor-Satorras R, Vespignani A. 2001. Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200–3203.PubMedCrossRefGoogle Scholar
  44. 44.
    Podani J, Oltvai ZN, Jeong H, Tombor B, Barabási A-L, Szathmary E. 2001. Comparable system-level organization of archae and eukaryotes. Nature Genet 29:54–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Rain J-C, Selig L, DeReuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, Wojcik J. 2001. The protein—protein interaction map of Helicobacter pylori. Nature 409:211–215.PubMedCrossRefGoogle Scholar
  46. 46.
    Ravasz E, Barabási A-L. 2002. Hierarchical organization in complex networks. Phys Rev E 67:026122.Google Scholar
  47. 47.
    Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L. 2002. Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555.PubMedCrossRefGoogle Scholar
  48. 48.
    Redner S. 1998. How popular is your paper? An empirical study of the citation distribution. Eur Phys J B4:131135.Google Scholar
  49. 49.
    Schwikowski B, Uetz P, Fields S. 2000. A network of protein—protein interactions in yeast. Nature Biotech 18:1257–1261.CrossRefGoogle Scholar
  50. 50.
    Shen-Orr S, Milo R, Mangan S, Alon U. 2002. Network motifs in the transcriptional regulation network of E. coli. Nature Genet 31:64–68.PubMedCrossRefGoogle Scholar
  51. 51.
    Solé R, Pastor-Satorras R, Smith E, Kepler T. 2002. A model of large-scale proteome evolution. Adv Compl Sys 5:43–54.CrossRefGoogle Scholar
  52. 52.
    Uetz P, Giot L, Cagney G, Mansfield T, Judson R, Knight J, Lockshorn D, Narayan V, Srinivasan M, Pochart P. 2000. A comprehensive analysis of protein—protein interactions of Saccharomyces cerevisiae. Nature 403:623–627.PubMedCrossRefGoogle Scholar
  53. 53.
    Vazquez A, Flammini A, Maritan A, Vespignani A. 2003. Modeling of protein interaction networks. ComPlexUs 1:38–44.CrossRefGoogle Scholar
  54. 54.
    Vogelstein B, Lane D, Levine A. 2000. Surfing the p53 network. Nature 408:307–310.PubMedCrossRefGoogle Scholar
  55. 55.
    Wagner A. 2000. Mutational robustness in genetic networks of yeast. Nature Genet 24:355–361.PubMedCrossRefGoogle Scholar
  56. 56.
    Wagner A. 2001. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 18:1283–1292.PubMedGoogle Scholar
  57. 57.
    Wagner A, Fell DA. 2001. The small world inside large metabolic networks. Proc Roy Soc London Ser B 268:1803–1810.CrossRefGoogle Scholar
  58. 58.
    Walhout A, Sordella R, Lu X, Hartley J, Temple G, Brasch M, Thierry-Mieg N, Vidal M. 2000. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122.PubMedCrossRefGoogle Scholar
  59. 59.
    Wasserman S, Faust K. 1994. Social network analysis: methods and applications. Cambridge UP, Cambridge.Google Scholar
  60. 60.
    Watts DJ, Strogatz SH. 1998. Collective dynamics of small-world networks. Nature 393:440–442.PubMedCrossRefGoogle Scholar
  61. 61.
    Wolf Y, Karev G, Koonin E. 2002. Scale-free networks in biology: new insights into the fundamentals of evolution? Bioessays 24:105–109.PubMedCrossRefGoogle Scholar
  62. 62.
    Wuchty S. 2001. Scale-free behavior in protein domain networks. Mol Biol Evol 18:1694–1702.PubMedGoogle Scholar
  63. 63.
    Wuchty S. 2002. Interaction and domain networks of yeast. Proteomics 2:1715–1723.PubMedCrossRefGoogle Scholar
  64. 64.
    Wuchty S. 2003. Small-worlds in RNA. Nucleic Acids Res 31:1108–1117.PubMedCrossRefGoogle Scholar
  65. 65.
    Xenarios I, Fernandez E, Salwinski L, Duan X, Thompson M, Marcotte E, Eisenberg D. 2001. DIP: the database of interacting proteins: 2001 update. Nucleic Acids Res 29:239–241.PubMedCrossRefGoogle Scholar
  66. 66.
    Yook SH, Oltvai ZN, Barabási A-L. 2003. Functional and topological characterization of protein—protein interaction networks. Submitted.Google Scholar

Copyright information

© Springer Inc. 2006

Authors and Affiliations

  • Stefan Wuchty
    • 2
  • Erszébet Ravasz
    • 2
  • Albert-László Barabási
    • 1
    Email author
  1. 1.Department of PhysicsUniversity of Notre DameNotre DameIndiana
  2. 2.Department of PhysicsUniversity of Notre DameNotre DameUSA

Personalised recommendations