Skip to main content

A Biologically Inspired Approach Toward Autonomous Real-World Robots

  • Chapter
  • 1912 Accesses

Abstract

We present an approach inspired by biological principles to design the control system for an eight-legged walking robot. The approach is based on two biological control primitives: central pattern generators and coupled reflexes. By using these mechanisms we can achieve omnidirectional walking and smooth gait transitions in a high-degree-of-freedom (14) walking machine. Additionally, the approach allows us to freely mix rhythmic activity with posture changes of the robot without reducing forward speed. This approach has proved to be extremely successful on rough terrain and has been evaluated in real-world tests over a variety of different substrates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Ayers J, Kashin S, Blidberg DR, Massa D. 1994. Biologically-based underwater robots. Unmanned Syst 12:30–36.

    Google Scholar 

  2. Blickhan R, Full RJ. 1998. Similarity in multilegged locomotion, bouncing like a monopode. J Comp Physiol A173:509–517.

    Google Scholar 

  3. Bowerman RF. 1975. The control of walking in the scorpion, I: leg movement during normal walking. J Comp Physiol 100:83–196.

    Google Scholar 

  4. Brooks RA. 1986. A robust layered control system for a mobile robot. IEEE J Robotics Automat 2:14–23.

    Google Scholar 

  5. Calvitti A, Beer RD. 2000. Analysis of a distributed model of leg coordination, I: individual coordination mechanisms. Biol Cybern 82:197–192.

    Article  PubMed  CAS  Google Scholar 

  6. Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J. 1998. Walknet—a biologically inspired network to control six-legged walking. Neural Netw 11:1435–1447.

    Article  PubMed  Google Scholar 

  7. Delcomyn F. 1980. Neural basis of rhythmic behavior in animals. Science 210:492–498.

    Article  PubMed  CAS  Google Scholar 

  8. Fearing RS, Chiang KH, Dickinson M, Pick DL, Sitti M, Yan J. 2000. Wing transmission for a micromechanical flying insect. In Proceedings of the IEEE international conference on robotics and automation, pp. 1509–1516. San Francisco, April.

    Google Scholar 

  9. Hebb D. 1949. The organization of behavior: a neuropsychological theory. Wiley, New York.

    Google Scholar 

  10. Kirchner F. 1995. Automatic decomposition of reinforcement learning tasks. In Proceedings of the AAAI95 fall symposium series on active learning, pp. 56–59. MIT, Cambridge.

    Google Scholar 

  11. Kirchner F. 1998. Q-learning of complex behaviors on a six-legged walking Machine. J Robotics Auton Syst 25:256–263.

    Google Scholar 

  12. Kupferman I, Weiss KR. 1978. The command neuron concept. Behav Brain Sci 1:3–39.

    Article  Google Scholar 

  13. Stein PSG. 1978. Motor systems with specific reference to the control of locomotion. Ann Rev Neurosci 1:61–81.

    Article  PubMed  CAS  Google Scholar 

  14. Spenneberg D, Kirchner F. 2000. Omnidirectional walking in an eight legged robot. Proceedings of the international symposium of robotics and automation (ISRA2000), Monterrey, Mexico.

    Google Scholar 

  15. Whitehead S. 1990. Active perception and reinforcement learning. In Proceedings of the 7th international conference on machine learning, pp. 162–169. Ed. B Porter, RJ Mooney. Morgann Kaufmann, San Francisco.

    Google Scholar 

  16. Wilson M. 2002. Six views of embodied cognition. Psychon Bull Rev 9:625–636.

    PubMed  Google Scholar 

  17. Fodor JA. 1983. The modularity of mind. Cambridge: MIT Press.

    Google Scholar 

  18. Nilsson NJ. 1984. Shakey the robot. SRI Technical Note 323. Menlo Park, CA: AI Center, SRI International.

    Google Scholar 

  19. James W. 1890. The principles of psychology. New York: Henry Holt.

    Google Scholar 

  20. Prinz W. 1987. Ideomotor action. In Perspectives on perception and action, p. 47–76. Ed H Heuer, AF Sanders. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  21. Gibson JJ. 1977. The theory of affordances. In Perceiving, acting, and knowing: toward and ecological psychology, pp. 62–82. Ed R Shaw, J Brandsford. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  22. Lakoff G, Johnson M. 1980. Metaphors we live by. Chicago: U Chicago P.

    Google Scholar 

  23. Brooks RA. 1986. A robust layered control system for a mobile robot. IEEE J Rob Automation 2(1):14–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kirchner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Inc.

About this chapter

Cite this chapter

Kirchner, F., Spenneberg, D. (2006). A Biologically Inspired Approach Toward Autonomous Real-World Robots. In: Deisboeck, T.S., Kresh, J.Y. (eds) Complex Systems Science in Biomedicine. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33532-2_35

Download citation

Publish with us

Policies and ethics