Advertisement

Abstract

The concepts and techniques developed by mathematicians, physicists, and engineers to characterize and predict the behavior of nonlinear dynamical systems are now being applied to a wide variety of biomedical problems. This chapter serves as an introduction to the central elements of the analysis of nonlinear dynamics systems. The fundamental distinctions between linear and nonlinear systems are described and the basic vocabulary used in studies of nonlinear dynamics introduced. Key concepts are illustrated with classic examples ranging from simple bistability and hysteresis in a damped, driven oscillator to spatiotemporal modes and chaos in large systems, and to multiple attractors in complex Boolean networks. The goal is to give readers less familiar with nonlinear dynamics a conceptual framework for understanding other chapters in this volume.

Keywords

State Space Periodic Orbit Lyapunov Exponent System Variable Nonlinear Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. 1.
    Aranson I, Levine H, Tsimring L. 1994. Controlling spatiotemporal chaos. Phys Rev Lett 72:2561.CrossRefGoogle Scholar
  2. 2.
    Bak P. 1996. How nature works: the science of self-organized criticality. Copernicus, New York.Google Scholar
  3. 3.
    Baker GL, Gollub JP. 1990. Chaotic dynamics: an introduction. Cambridge UP, Cambridge.Google Scholar
  4. 4.
    Bohr T, Jensen MH, Paladin G, Vulpiani A. 1998. Dynamical systems approach to turbulence. Cambridge UP, Cambridge.Google Scholar
  5. 5.
    Cabo C, Rosenbaum DS. 2003. Quantitative cardiac electrophysiology. Marcel Dekker, New York.Google Scholar
  6. 6.
    Cross MC, Hohenberg PC. 1993. Pattern formation outside of equilibrium. Rev Mod Phys 65:851–1112.CrossRefGoogle Scholar
  7. 7.
    Egolf DA, Melnikov IV, Bodenschatz E. 1998. Importance of local pattern properties in spiral defect chaos. Phys Rev Lett 80:3228–3231.CrossRefGoogle Scholar
  8. 8.
    Epstein IR, Pojman JA. 1998. An introduction to chemical dynamics: oscillations, waves, patterns, and chaos. Oxford UP, New York.Google Scholar
  9. 9.
    Feigenbaum MJ. 1978. Quantitative universality for a class of nonlinear transofrmations. J Stat Phys 19:25.CrossRefGoogle Scholar
  10. 10.
    Fenton F, Karma A. 1998. Fiber-rotation-induced vortex turbulence in thick myocardium. Phys Rev Lett 81:481.CrossRefGoogle Scholar
  11. 11.
    Glass L. 1996. Dynamics of cardiac arrhythmias. Phys Today 49:40.Google Scholar
  12. 12.
    Golubitsky M, Schaeffer DG. 1988. Singularities and groups in bifurcation theory. Springer Verlag, New York.Google Scholar
  13. 13.
    Hall GM, Bahar S, Gauthier DJ. 1999. The prevalence of rate-dependent dynamics in cardiac tissue. Phys Rev Lett 82:2995–2999.CrossRefGoogle Scholar
  14. 14.
    Kauffman SA. 1974. The large-scale structure and dynamics of gene control circuits. J Theor Biol 44:167.PubMedCrossRefGoogle Scholar
  15. 15.
    Kauffman SA. 1993. Origins of order. Oxford UP, New York.Google Scholar
  16. 16.
    Makse H. 2002. Thermodynamics and effective temperatures in sheared granular matter and emulsions. Eur Phys J E 9:265–269.PubMedCrossRefGoogle Scholar
  17. 17.
    Manneville P. 1990. Dissipative structures and weak turbulence. Academic Press, New York.Google Scholar
  18. 18.
    Miller J, Huse DA. 1993. Macroscopic equilibrium from microscopic irreversibility in a chaotic coupled-map lattice. Phys Rev E 48:2528–2535.CrossRefGoogle Scholar
  19. 19.
    Morris SW, Bodenschatz E, Cannell DS, Ahlers G. 1993. Spiral defect chaos in large aspect ratio Rayleigh-Benard convection. Phys Rev Lett 71:2026–2029.CrossRefGoogle Scholar
  20. 20.
    Murray JD. 2002. Mathematical biology, Vol. I, 3rd ed. Springer, Berlin.Google Scholar
  21. 21.
    Ogata K. 1987. Discrete-time control systems. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  22. 22.
    Ogata K. 2001. Modern control engineering. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  23. 23.
    Ostlund S, Rand D, Sethna J, Siggia E. 1983. Universal properties of the transition from quasiperdiocity to chaos in dissipative systems. Physica D 8:303.CrossRefGoogle Scholar
  24. 24.
    Ott E. 2002. Chaos in dynamical systems, 2nd ed. Cambridge UP, Cambridge.Google Scholar
  25. 25.
    Ott E, Grebogi C, Yorke JA. 1990. Controlling chaos. Phys. Rev. Lett. 64:1196.CrossRefGoogle Scholar
  26. 26.
    Roth BJ, Krassowska W. 1998. The induction of reentry in cardiac tissue, the missing link: how electric fields alter transmembrane potential. Chaos 8:204–220.PubMedCrossRefGoogle Scholar
  27. 27.
    Socolar JES, Kauffman SA. 2003. Scaling in ordered and critical random Boolean networks. Phys Rev Lett 90:068702.PubMedCrossRefGoogle Scholar
  28. 28.
    Strogatz SH. 1994. Nonlinear dynamics and chaos. Perseus Books, Reading, MA.Google Scholar
  29. 29.
    Strogatz SH. 2000. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143:1–20.CrossRefGoogle Scholar
  30. 30.
    Takens F. 1980. Detecting strange attractors in turbulence. In Dynamical systems and turbulence, pp. 366–381. Ed. DA Rand, LS Young. Springer lecture notes in mathematics, Vol. 898. Springer, New York.CrossRefGoogle Scholar
  31. 31.
    Tolkacheva EG, Romeo MM, Guerraty M, Gauthier DJ. 2004. Condition for alternans and its control in a two-dimensional mapping model of paced cardiac dynamics. Phys Rev E 69:031904.CrossRefGoogle Scholar
  32. 32.
    Trefethen LN. 1997. Pseudospectra of linear operators. SIAM Rev 39:383–406.CrossRefGoogle Scholar
  33. 33.
    Walgraef D. 1997. Spatio-temporal pattern formation: with examples from physics, chemistry, and materials science. Springer, New York.Google Scholar
  34. 34.
    Winfree AT. 1997. Heart muscle as a reaction-diffusion medium: the roles of electric potential diffusion, activation front curvature, and anisotropy. Int J Bifurcations Chaos 7:487–526.CrossRefGoogle Scholar

Copyright information

© Springer Inc. 2006

Authors and Affiliations

  1. 1.Physics DepartmentDuke UniversityDurham

Personalised recommendations