Advertisement

Modeling Tumors as Complex Biosystems: An Agent-Based Approach

  • Yuri Mansury
  • Thomas S. DeisboeckEmail author
Part of the Topics in Biomedical Engineering International Book Series book series (ITBE)

Abstract

We argue that tumors behave as complex dynamic self-organizing and adaptive biosystems. In this chapter, we present a numerical agent-based model of malignant brain tumor cells in which both time and space are discrete yet environmental variables are treated as a continuum. Simulations of this multiscale algorithm allow us to investigate the molecular, microscopic, and multicellular patterns that emerge from various interactions among cells and between the cells and their environments.

Keywords

Local Search Cellular Automaton Toxic Metabolite Tumor System Malignant Brain Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. 1.
    Chignola R, Schenetti A, Chiesa E, Foroni R, Sartoris S, Brendolan A, Tridente G, Andrighetto G, Liberati D. 1990. Oscillating growth patterns of multicellular tumour spheroids. Cell Prolif 32:39–48.Google Scholar
  2. 2.
    Coffey DS. 1998. Self-organization, complexity and chaos: the new biology for medicine. Nature Med 4:882–885.PubMedCrossRefGoogle Scholar
  3. 3.
    Deisboeck TS, Berens ME, Kansal AR, Torquato S, Stemmer-Rachamimov AO, Chiocca EA. 2001. Pattern of self-organization in tumor systems: complex growth dynamics in a novel brain tumor spheroid model. Cell Prolif 34:115–134.PubMedCrossRefGoogle Scholar
  4. 4.
    Gonzalez-Garcia I, Sole RI, Costa J. 2002. Metapopulation dynamics and spatial heterogeneity in cancer. PNAS 99:13085–13089.PubMedCrossRefGoogle Scholar
  5. 5.
    Waliszewski P, Molski M, Konarski J. 1998. On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi determination of the dynamic network. J Surg Oncol 68:70–78.PubMedCrossRefGoogle Scholar
  6. 6.
    Mansury Y, Kimura M, Lobo J, Deisboeck TS. 2002. Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. J Theor Biol 219:343–370.PubMedCrossRefGoogle Scholar
  7. 7.
    Mansury Y, Deisboeck TS. 2003. The impact of “search precision” in an agent-based tumor model. J Theor Biol 224:325–337.PubMedCrossRefGoogle Scholar
  8. 8.
    Mansury Y, Deisboeck TS. 2004. Simulating “structure-function” patterns of malignant brain tumors. Physica A 331:219–232.CrossRefGoogle Scholar
  9. 9.
    Mansury Y, Deisboeck TS. 2004. Simulating the time series of a selected gene expression profile in an agent-based tumor model. Physica D 196:193–204.CrossRefGoogle Scholar
  10. 10.
    Kansal AR, Torquato S, Chiocca EA, Deisboeck TS. 2000. Emergence of a subpopulation in a computational model of tumor growth. J Theor Biol 207:431–441.PubMedCrossRefGoogle Scholar
  11. 11.
    Giese A, Loo MA, Tran N, Haskett D, Coons S, Berens ME. 1996a. Dichotomy of astrocytoma migration and proliferation. Intl J Cancer 67:275–282.CrossRefGoogle Scholar
  12. 12.
    Mariani L, Beaudry C, McDonough WS, Hoelzinger DB, Demuth T, Ross KR, Berens T, Coons SW, Watts G, Trent JM, Wei JS, Giese A, Berens ME. 2001. Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis. J Neuro-Oncol 53:161–176.CrossRefGoogle Scholar
  13. 13.
    Ermentrout GB, Edelstein-Keshet L. 1993. Cellular automata approaches to biological modeling. J Theor Biol 160:97–133.PubMedCrossRefGoogle Scholar
  14. 14.
    Kauffman S. 1984. Emergent properties in random complex automata. Physica D 10:145–156.CrossRefGoogle Scholar
  15. 15.
    Wolfram S. 1984. Cellular automaton as models of complexity. Nature 311:419–424.CrossRefGoogle Scholar
  16. 16.
    Kauffman S. 1990. The origins of order. Oxford UP, New York.Google Scholar
  17. 17.
    Forest S. 1990. Emergent computation: self-organizing, collective, and cooperative phenomena in natural and artificial computing networks. Physica D 42:1–11.CrossRefGoogle Scholar
  18. 18.
    Duechting W, Vogelsaenger T. 1983. Aspects of modelling and simulating tumor growth and treatment. J Cancer Res Clin Oncol 105:1–12.CrossRefGoogle Scholar
  19. 19.
    Chowdhury D, Sahimi M, Stauffer D. 1991. A discrete model for immune surveillance, tumour immunity and cancer. J Theor Biol 152:263–270.PubMedCrossRefGoogle Scholar
  20. 20.
    Qi A-S, Zheng X, Du C-Y, An B-S. 1993. A cellular automaton model of cancerous growth. J Theor Biol 161:1–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Smolle J, Stettner H. 1993. Computer simulation of tumor cell invasion by a stochastic growth model. J Theor Biol 160:63–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Delsanto PP, Romano A, Scalerandi M, Pescarmona GP. 2000. Analysis of a “phase transition” from tumor growth to latency. Phys Rev E 62:2547–2554.CrossRefGoogle Scholar
  23. 23.
    Sander LM, Deisboeck TS. 2002. Growth patterns of microscopic brain tumors. Phys Rev E 66:051901.CrossRefGoogle Scholar
  24. 24.
    Marusic M, Bajzer Z, Freyer JP, Vuk-Pavlovic S. 1994. Analysis of growth of multicellular tumour spheroids by mathematical models. Cell Prolif 27:73–94.PubMedGoogle Scholar
  25. 25.
    Kansal AR, Torquato S, Chiocca EA, Deisboeck TS. 2000. Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol 203:367–382.PubMedCrossRefGoogle Scholar
  26. 26.
    Tracqui P. 1995. From passive diffusion to active cellular migration in mathematical models of tumor invasion. Acta Biotheor 43:443–464.PubMedCrossRefGoogle Scholar
  27. 27.
    Perumpanani AJ, Sherratt JA, Norbury J, Byrne HM. 1996. Biological inferences from a mathematical model for malignant invasion. Invasion Metastasis 16:209–221.PubMedGoogle Scholar
  28. 28.
    Swanson KR, Alvord Jr EC, Murray JD. 2002. Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Brit J Cancer 86:14–18.PubMedCrossRefGoogle Scholar
  29. 29.
    Turner S, Sherratt JA. 2002. Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J Theor Biol 216:85–100.PubMedCrossRefGoogle Scholar
  30. 30.
    Habib S, Molina-Paris C, Deisboeck TS. 2003. Complex dynamics of tumors: modeling an emerging brain tumor system using a set of coupled reaction-diffusion equations. Physica A 327:501–524.CrossRefGoogle Scholar
  31. 31.
    Tamaki M, McDonald W, Amberger VR, Moore E, Maestro RFD. 1997. Implantation of C6 astrocytoma spheroid into collagen type I gels: invasive, proliferative, and enzymatic characterizations. J Neurosurg 87:602–609.PubMedCrossRefGoogle Scholar
  32. 32.
    Boado RJ, Black KL, Pardridge WM. 1994. Gene Expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. Brain Res Mol Brain Res 27:51–57.PubMedCrossRefGoogle Scholar
  33. 33.
    Chicoine MR, Madsen CL, Silbergeld DL. 1995. Modification of human glioma locomotion in vitro by cytokines EGF, bFGF, PDGFbb, NGF, and TNFα. Neurosurgery 36:1165–1171.PubMedCrossRefGoogle Scholar
  34. 34.
    Sang HU, Espiritu OD, Kelley PY, Klauber MR, Hatton JD. 1995. The role of the epidermal growth factor receptor in human gliomas, I: the control of cell growth. J Neurosurg 82:841–846.Google Scholar
  35. 35.
    Jabour BA, Choi Y, Hoh CK, Rege SD, Soong JC, Lufkin RB, Hanafee WN, Maddahi J, Chaiken L, Bailet J. 1993. Extracranial head and neck: PET imaging with 2-[F-18] fluoro-2-deoxy-D-glucose and MR imaging correlation. Radiology 186:27–35.PubMedGoogle Scholar
  36. 36.
    Yonekura Y, Benua RS, Brill AB, Som P, Yeh SD, Kemeny NE, Fowler JS, MacGregor RR, Stamm R, Christman DR, Wolf AP. 1982. Increased accumulation of 2-deoxy-2-[18F] fluoro-D-glucose in liver metastases from colon carcinoma. J Nucl Med 23:1133–1137.PubMedGoogle Scholar
  37. 37.
    Acker H, Holtermann G, Boelling B, Carlsson J. 1992. Influence of glucose on metabolism and growth of rat glioma cells (C6) in multicellular spheroid culture. Intl J Cancer 52:279–285.CrossRefGoogle Scholar
  38. 38.
    Sutherland RM, Sordat B, Bamat J, Gabbert H, Bourrat B, Mueller-Klieser W. 1986. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res 46:5320–5329.PubMedGoogle Scholar
  39. 39.
    Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK. 1997. Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotechnol 15:778–783.CrossRefGoogle Scholar
  40. 40.
    Oishi Y, Uezono Y, Yanagihara N, Izumi F, Nakamura T, Suzuki K. 1998. Transmural compression-induced proliferation and DNA synthesis through activation of a tyrosine kinase pathway in rat astrocytoma RCR-1 cells. Brain Res 781:159–166.PubMedCrossRefGoogle Scholar
  41. 41.
    Nakano A, Tani E, Miyazaki K, Yamamoto Y, Furuyama J. 1995. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gliomas. J Neurosurg 83:298–307.PubMedGoogle Scholar
  42. 42.
    Marx E, Mueller-Klieser W, Vaupel P. 1988. Lactate-induced inhibition of tumor cell proliferation. Intl J Radiation Oncol Biol Phys 14:947–955.Google Scholar
  43. 43.
    Krtolica A, Ludlow JW. 1996. Hypoxia arrests ovarian carcinoma cell cycle progression, but invasion is unaffected. Cancer Res 56:1168–1173.PubMedGoogle Scholar
  44. 44.
    Plasswilm L, Tannapfel A, Cordes N, Demir R, Hoeper K, Bauer J, Hoeper J. 2000. Hypoxiainduced tumour cell migration in an in vivo chicken model. Pathobiology 68:99–105.PubMedCrossRefGoogle Scholar
  45. 45.
    Barabasi A-L, Stanley HE. 1995. Fractal concepts in surface growth. Cambridge UP, Cambridge.Google Scholar
  46. 46.
    Giese A, Loo MA, Norman SA, Treasurywala S, Berens ME. 1996b. Contrasting migratory response of astrocytoma cells to tenascin mediated by different integrins. J Cell Sci 109:2161–2168.PubMedGoogle Scholar
  47. 47.
    Cavalla P, Schiffer D. 1997. Cell cycle and proliferation markers in neuroepithelial tumors. Anticancer Res 17:4135–4143.PubMedGoogle Scholar
  48. 48.
    Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. 1994. Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689.CrossRefGoogle Scholar
  49. 49.
    Mueller-Klieser W, Sutherland RM. 1982. Oxygen tensions in multicell spheroids of two cell lines. Brit J Cancer 45:256–264.PubMedGoogle Scholar
  50. 50.
    Carmeliet P, Jain RK. 2000. Angiogenesis in cancer and other diseases. Nature 407:249–257.PubMedCrossRefGoogle Scholar
  51. 51.
    Cross SS, Bury JP, Silcocks PB, Stephenson TJ, Cotton DW. 1994. Fractal geometric analysis of colorectal polyps. J Pathol 172:317–323.PubMedCrossRefGoogle Scholar
  52. 52.
    Cross SS. 1997. Fractals in pathology. J Pathol 182:1–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Okada Y, Hurwitz EE, Esposito JM, Brower MA, Nutt CL, Louis DN. 2003. Selection pressures of TP53 mutation and microenvironmental location influence EGFR gene amplification in human glioblastomas. Cancer Res 63:413–416.PubMedGoogle Scholar
  54. 54.
    Valery CA, Marro B, Boyer O, Duyme M, Mokhtari K, Marsault C, Klatzmann D, Philippon J. 2001. Extent of tumor-brain interface: a new tool to predict evolution of malignant gliomas. J Neurosurg 94:433–436.PubMedCrossRefGoogle Scholar
  55. 55.
    Athale C, Mansury Y, Deisboeck TS. 2005. Simulating the impact of a molecular “decisionprocess” on cellular phenotype and multicellular patterns in brain tumors. J Theor Biol 233:469–481.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Inc. 2006

Authors and Affiliations

  1. 1.Complex Biosystems Modeling Laboratory, Harvard-MIT Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestown
  2. 2.Complex Biosystems Modeling Laboratory, Harvard-MIT Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General Hospital, East CNY-2301Charlestown

Personalised recommendations