Advertisement

Developmental Biology: Branching Morphogenesis

  • S. R. LubkinEmail author
Part of the Topics in Biomedical Engineering International Book Series book series (ITBE)

Abstract

Branching morphogenesis is a ubiquitous system in the developmental biology of macroscopic organisms. Many of the details are known, yet a unified understanding remains out of reach. Many of the relevant facts about branching morphogenesis become clearer if we include a mechanical interpretation of the interactions between tissues.

Keywords

Basal Lamina Viscosity Ratio Embryonic Tissue Point Force Cleft Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    Ball WD 1974. Development of the rat salivary glands, III: mesenchymal specificity in the morphogenesis of the embryonic submaxillary and sublingual glands of the rat. J Exp Zool 188:277–288.PubMedCrossRefGoogle Scholar
  2. 2.
    Banerjee SD, Cohn RH, Bernfield MR. 1977. Basal lamina of embryonic salivary epithelium. J Cell Biol 73:445–463.PubMedCrossRefGoogle Scholar
  3. 3.
    Bard JBL. 1990. Morphogenesis: the cellular and molecular processes of developmental anatomy. Cambridge UP, Cambridge.Google Scholar
  4. 4.
    Barocas VH, Moon AG, Tranquillo RT. 1995. The fibroblast-populated collagen microsphere assay of cell traction force 2: measurement of the cell traction parameter. J Biomech Eng 117(2):161–170.PubMedGoogle Scholar
  5. 5.
    Bassingthwaighte JB, Leibovich LS, West BJ. 1994. Fractal physiology. Oxford UP, New York.Google Scholar
  6. 6.
    Bernfield MR, Banerjee SD. 1982. The turnover of basal lamina glycosaminoglycan correlates with epithelial morphogenesis. Dev Biol 90:291–305.PubMedCrossRefGoogle Scholar
  7. 7.
    Bernfield MR, Banerjee SD, Koda JE, Rapraeger AC. 1984. Remodelling of the basement membrane as a mechanism of morphogenetic tissue interaction. In The role of extracellular matrix in development, pp. 545–572. Ed. RL Trelstad. Liss, New York.Google Scholar
  8. 8.
    Brodland GW, Clausi DA. 1994. Embryonic tissue morphogenesis modeled by FEM. J Biomech Eng 116(2):146–155.PubMedGoogle Scholar
  9. 9.
    Chen HH, Brodland GW. 2000. Cell-level finite element studies of viscous cells in planar aggregates. J Biomech Eng 122(4):394–401.PubMedCrossRefGoogle Scholar
  10. 10.
    Davidson LA, Koehl MAR, Keller R, Oster GF. 1995. How do sea urchins invaginate? using biomechanics to distinguish between mechanisms of primary invagination. Development 121(7):2005–2018.PubMedGoogle Scholar
  11. 11.
    Davies JA. 2002. Do different branching epithelia use a conserved developmental mechanism? BioEssays 24:937–948.PubMedCrossRefGoogle Scholar
  12. 12.
    Drury JL, Dembo M 1999. Hydrodynamics of micropipette aspiration. Biophys J 76(1, pt. 1):110–128.PubMedGoogle Scholar
  13. 13.
    Forgacs G, Foty RA, Shafrir Y, Steinberg MS. 1998. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys J 74:2227–2234.PubMedCrossRefGoogle Scholar
  14. 14.
    Foty RA, Forgacs G, Pfleger CM, Steinberg MS. 1994. Liquid properties of embryonic tissues: measurement of interfacial tensions. Phys Rev Lett 72(14):2298–2301.CrossRefPubMedGoogle Scholar
  15. 15.
    Greenspan HP. 1977. On the dynamics of cell cleavage. J Theor Biol 65:79–99.PubMedCrossRefGoogle Scholar
  16. 16.
    Grobstein C. 1953. Epithelio-mesenchymal specificity in the morphogenesis of mouse submandibular rudiments in vitro. J Exp Zool 124:383–414.CrossRefGoogle Scholar
  17. 17.
    Grobstein C. 1953. Analysis in vitro of the early organization of the rudiments of the mouse submandibular gland. J Morph 93:19–44.CrossRefGoogle Scholar
  18. 18.
    Grobstein C. 1953. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature 172:869–871.PubMedCrossRefGoogle Scholar
  19. 19.
    Grobstein C, Cohen J. 1965. Collagenase: effect on the morphogenesis of embryonic salivary epithelium in vitro. Science 150:626–628.PubMedCrossRefGoogle Scholar
  20. 20.
    Hamamoto S, Imagawa W, Yang J, Nandi S. 1988. Morphogenesis of mouse mammary epithelial cells growing within collagen gels: ultrastructural and immunocytochemical characterization. Cell Diff 22(3):191–201.CrossRefGoogle Scholar
  21. 21.
    Hardman P, Spooner BS. 1992. Salivary epithelium branching morphogenesis. In Epithelial organization and development, pp. 353–375. Ed. TP Fleming. Chapman and Hall, London.Google Scholar
  22. 22.
    Harris AK, Stopak D, Wild P. 1980. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251.CrossRefGoogle Scholar
  23. 23.
    Harris AK, Stopak D, Warner P. 1984. Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the Turing model. J Embryol Exp Morphol 80:1–20.PubMedGoogle Scholar
  24. 24.
    Hayakawa T, Kishi J, Nakanishi Y. 1992. Salivary gland morphogenesis: possible involvement of collagenase. Matrix Suppl 1:344–351.PubMedGoogle Scholar
  25. 25.
    He X, Dembo M. 1997. A dynamical model of cell division. In Dynamics of cell and tissue motion, pp. 55–66. Ed. W Alt, A Deutsch, G Dunn. Birkhäuser, Basel.Google Scholar
  26. 26.
    Hieda Y, Nakanishi Y. 1997. Epithelial morphogenesis in mouse embryonic submandibular gland: its relationships to the tissue organization of epithelium and mesenchyme. Dev Growth Diff 39:1–8.CrossRefGoogle Scholar
  27. 27.
    Kitaoka H, Takaki R, Suki B. 1999. A three-dimensional model of the human airway tree. J Appl Physiol 87(6):2207–2217.PubMedGoogle Scholar
  28. 28.
    Kolodney MS, Wysolmerski RB. 1992. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J Cell Biol 117:73–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Kratochwil, K. 1969. Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev Biol 20:46–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Lane MC, Koehl MAR, and Keller R. 1993. A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin. Development 117(3):1049–1060.PubMedGoogle Scholar
  31. 31.
    Lawson FW, 1972. The role of mesenchyme in the morphogenesis and functional differentiation of rat salivary epithelium. J Embryol Exp Morphol 27:497–513.PubMedGoogle Scholar
  32. 32.
    Lawson KA. 1974. Mesenchyme specificity in rodent salivary gland development: the response of salivary epithelium to lung mesenchyme in vitro. J Embryol Exp Morphol 32:469–493.PubMedGoogle Scholar
  33. 33.
    Lawson KA. 1983. Stage specificity in the mesenchyme requirement of rodent lung epithelium in vitro: a matter of growth control? J Embryol Exp Morphol 74:183–206.PubMedGoogle Scholar
  34. 34.
    Leal LG. 1992. Laminar flow and convective processes: scaling principles and asumptotic analysis. Butterworth-Heinemann, BostonGoogle Scholar
  35. 35.
    Li Z, Lubkin SR. 2001. Numerical analysis of interfacial stokes flow with discontinuous viscosity and nonlinear surface tension. Int J Numer Meth Fluids 37:525–540.CrossRefGoogle Scholar
  36. 36.
    Lubkin SR, Jackson T. 2002. Multiphase mechanics of capsule formation in tumors. J Biomech Eng 124:237–243.PubMedCrossRefGoogle Scholar
  37. 37.
    Lubkin SR, Li Z. 2002. Force and deformation on branching rudiments: cleaving between hypotheses. Biomech Modeling Mechanobiol 1(1):5–16.CrossRefGoogle Scholar
  38. 38.
    Lubkin SR, Murray JD. 1995. A mechanism for early branching in lung morphogenesis. J Math Biol 34:77–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Matsui R, Thurlbeck WM, Shehata EI, Sekhon HS. 1996. Two different patterns of airway branching regulated by different components of the extracellular matrix in vitro. Exp Lung Res 22(6):593–611.PubMedGoogle Scholar
  40. 40.
    Miura T, Shiota K. 2000. Time-lapse observation of branching morphogenesis of the lung bud epithelium in mesenchyme-free culture and its relationship with the localization of actin filaments. Int J Dev Biol 44(8):899–902.PubMedGoogle Scholar
  41. 41.
    Nakanishi Y, Ishii T. 1989. Epithelial shape change in mouse embryonic submandibular gland modulation by extracellular matrix components. Bioessays 11(6):163–167.PubMedCrossRefGoogle Scholar
  42. 42.
    Nakanishi Y, Morita T, Nogawa H. 1987. Cell proliferation is not required for the initiation of early cleft formation in mouse submandibular epithelium in vitro. Development 99:429–437.PubMedGoogle Scholar
  43. 43.
    Nakanishi Y, Sugiura F, Kishi J-I, T. H. 1986. Collagenase inhibitor stimulates cleft formation during early morphogenesis of mouse salivary gland. Dev Biol 113:201–206.PubMedCrossRefGoogle Scholar
  44. 44.
    Nakanishi Y, Sugiura F, Kishi J, Hayakawa T. 1986. Scanning electron microscopic observation of mouse embryonic submandibular glands during initial branching: preferential localization of fibrillar structures at the mesenchymal ridges participating in cleft formation. J Embryol Exp Morphol 96:65–77.PubMedGoogle Scholar
  45. 45.
    Nakanishi Y, Ishii T. 1989. Epithelial shape change in mouse embryonic submandibular gland: modulation by extracellular matrix components. BioEssays 11:163–167.PubMedCrossRefGoogle Scholar
  46. 46.
    Nogawa H, Ito T. 1995. Branching morphogenesis if embryonic mouse lung epithelium in mesenchyme-free culture. Development 121:1015–1022.PubMedGoogle Scholar
  47. 47.
    Nogawa H, Nakanishi Y. 1987. Mechanical aspects of the mesenchymal influence on epithelial branching morphogenesis of mouse salivary gland. Development 101:491–500.Google Scholar
  48. 48.
    Nogawa H, Takahashi Y. 1991. Substitution for mesenchyme by basement-membrane-like substratum and epidermal growth factor in inducing branching morphogenesis of mouse salivary epithelium. Development 112:855–861.PubMedGoogle Scholar
  49. 49.
    Phillips HM, Steinberg MS, Lipton BH. 1977. Embryonic tissues as elasticoviscous liquids, II: direct evidence for cell slippage in centrifuged aggregates. Dev Biol 59:124–134.PubMedCrossRefGoogle Scholar
  50. 50.
    Phillips HM, Steinberg MS. 1978. Embryonic tissues as elasticoviscous liquids, I: rapid and slow shape changes in centrifuged cell aggregates. J Cell Sci 30:1–20.PubMedGoogle Scholar
  51. 51.
    Rappaport R. 1977. Tensiometric studies of cytokinesis in cleaving sand dollar eggs. J Exp Zool 201:375–78.PubMedCrossRefGoogle Scholar
  52. 52.
    Reed J, Vernon RB, Abrass IB, Sage EH. 1994. TGF-B1 induces the expression of type 1 collagen and SPARC, and enhances contraction of collagen gels, by fibroblasts from young and aged donors. J Cell Physiol 158:169–179.PubMedCrossRefGoogle Scholar
  53. 53.
    Roux W 1895. The problems, methods, and scope of developmental mechanics. Archiv für Entwicklungsmechanik der Organismen 1:1CrossRefGoogle Scholar
  54. 54.
    Spooner BS, Bassett KE, Spooner Jr. BS. 1989. Embryonic salivary gland epithelial branching activity is experimentally independent of epithelial expansion activity. Dev Biol 133:569–575.PubMedCrossRefGoogle Scholar
  55. 55.
    Spooner BS, Wessells NK. 1972. An analysis of salivary gland morphogenesis: role of cytoplasmic microfilaments and microtubules. Dev Biol 27:38–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Spooner BS, Thompson-Pletscher HA, Stokes B, Bassett KE. 1986. Extracellular matrix involvement in epithelial branching morphogenesis. In Developmental biology, Vol. 3: Cell surface development and cancer, pp. 225–260. Ed MS Steinberg. Plenum, New York.Google Scholar
  57. 57.
    Stopak D, Harris AK. 1982. Connective tissue morphogenesis by fibroblast traction. Dev Biol 90:383–398.PubMedCrossRefGoogle Scholar
  58. 58.
    Taber LA. 2000. Pattern formation in a nonlinear membrane model for epithelial morphogenesis. Acta Biotheoret 48(1):47–63.CrossRefGoogle Scholar
  59. 59.
    Takahashi Y, Nogawa H. 1991. Branching morphogenesis of mouse salivary epithelium in basement-membrane-like substratum separated from mesenchyme by the membrane filter. Development 111:327–335.PubMedGoogle Scholar
  60. 60.
    Vernon RB, Angello JC, Iruela-Arispe ML, Lane TF, Sage EH. 1992. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab Invest 66(5):536–547.PubMedGoogle Scholar
  61. 61.
    Vernon RB, Lara SL, Drake CJ, Iruela-Arispe ML, Angello JC, Little CD, Wight TN, Sage EH. 1995. Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell Dev Biol 31(2):120–131.CrossRefGoogle Scholar
  62. 62.
    Weibel ER. 1963. Morphometry of the human lung. Springer, New York.Google Scholar
  63. 63.
    Wolpert L. 1991. The triumph of the embryo. Oxford UP, Oxford.Google Scholar
  64. 64.
    Yang J, Larson L, Nandi S. 1982. Three-dimensional growth and morphogenesis of mouse submandibular epithelial cells in serum-free primary culture. Exp Cell Res 137(2):481–85.PubMedCrossRefGoogle Scholar
  65. 65.
    Yang J, Balakrishnan A, Hamamoto S, Elias JJ, Rosenau W, CW Beattie, Das Gupta TK, Wellings SR, Nandi S. 1987. Human breast epithelial cells in serum-free collagen gel primary culture: growth, morphological, and immunocytochemical analysis. J Cell Physiol 133(2):228–234, 254–255.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsNorth Carolina State UniversityRaleigh

Personalised recommendations