Skip to main content

Patterning by EGF Receptor: Models from Drosophila Development

  • Chapter
Complex Systems Science in Biomedicine

Abstract

The epidermal growth factor receptor (EGFR) belongs to a large class of receptor tyrosine kinases. Abnormal EGFR signaling is associated with severe developmental defects and many types of cancers. Many individual molecules mediating the EGFR-induced responses became drug targets in oncology and other areas of medicine. However, neither the contribution of EGFR to tissue morphogenesis in development nor the exact role of deregulated EGFR signaling in diseases is understood at this time. The key challenge is to integrate the existing molecular and cellular information into a systems-level description of the EGFR network in tissues. Systems-level descriptions are impossible without quantitative models. Even the simplest models of EGFR signaling in tissues must simultaneously account for ligand transport, binding, signal transduction, and gene expression. Given this complexity, such tissue-level models are difficult to test; therefore, they require appropriate experimental paradigms for their validation. We suggest that model organisms of developmental genetics, such as the fruit fly Drosophila melanogaster, can be used as experimental systems for the development and validation of computational descriptions of EGFR signaling in tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. 2003. Epidermal growth factor receptor: mechanisms of activation and signaling. Exp Cell Res 284(4):31–53.

    Article  PubMed  CAS  Google Scholar 

  2. Yarden Y, Sliwkowski MX. 2001. Untangling the ErbB signalling network. Nature Rev Mol Cell Biol 2:127–137.

    Article  CAS  Google Scholar 

  3. Pierce KL, Tohgo A, Ahn S, Field ME, Luttrell LM, Lefkowitz RJ. 2001. Epidermal growth factor (EGF) receptor-dependent ERK activation by G protein-coupled receptors: a co-culture system for identifying intermediates upstream and downstream of heparin-binding EGF shedding. J Biol Chem 276(25):23155–23160.

    Article  PubMed  CAS  Google Scholar 

  4. Vermeer PD, Einwalter LA, Moninger TO, Rokhlina T, Kern JA, Zabner J, Welsh MJ. 2003. Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 422(6929):322–326.

    Article  PubMed  CAS  Google Scholar 

  5. Wiley HS, Shvartsman SY, Lauffenburger DA. 2003. Computational modeling of the EGF receptor system: a paradigm for systems biology. Trends Cell Biol 13(1):43–50.

    Article  PubMed  CAS  Google Scholar 

  6. Lander AD, Nie W, Wan FY. 2002. Do morphogen gradients arise by diffusion? Dev Cell 2(6):785–796.

    Article  PubMed  CAS  Google Scholar 

  7. Shilo BZ. 2003. Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp Cell Res 284(1):140–149.

    Article  PubMed  CAS  Google Scholar 

  8. Casci T, Freeman M. 1999. Control of EGF receptor signalling: lessons from fruitflies. Cancer Metastasis Rev 18(2):181–201.

    Article  PubMed  CAS  Google Scholar 

  9. Klein DE, Nappi VM, Reeves GT, Shvartsman SY, Lemmon MA. 2004. Argos inhibits epidermal growth factor receptor signaling by ligand sequestration. Nature 430(730):1040–1044.

    Article  PubMed  CAS  Google Scholar 

  10. Golembo M, Yarnitzky T, Volk T, Shilo BZ. 1999. Vein expression is induced by the EGF receptor pathway to provide a positive feedback loop in patterning the Drosophila embryonic ventral ectoderm. Genes Dev 13(2):158–162.

    PubMed  CAS  Google Scholar 

  11. Wasserman JD, Freeman M. 1998. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell 95(3):355–364.

    Article  PubMed  CAS  Google Scholar 

  12. Schweitzer R, Shilo BZ. 1997. A thousand and one roles for the Drosophila EGF receptor. Trends Genet 13(5):191–196.

    Article  PubMed  CAS  Google Scholar 

  13. Golembo M, Raz E, Shilo BZ. 1997. The Drosophila embryonic midline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm. Development 122(11):3363–3370.

    Google Scholar 

  14. Golembo M, Schweitzer R, Freeman M, Shilo BZ. 1996. Argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development 122(1):223–230.

    PubMed  CAS  Google Scholar 

  15. Nambu JR, Franks RG, Hu S, Crews ST. 1990. The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 63(1):63–57.

    Article  PubMed  CAS  Google Scholar 

  16. Lee JR, Urban S, Garvey CF, Freeman M. 2001. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell 107(2):161–171.

    Article  PubMed  CAS  Google Scholar 

  17. Dobens LL, Raftery LA. 2000. Integration of epithelial patterning and morphogenesis in Drosophila oogenesis. Dev Dyn 218(1):80–93.

    Article  PubMed  CAS  Google Scholar 

  18. Spradling, AC. 1993. Developmental genetics of oogenesis. In The development of drosophila melanogaster, pp. 1–70. Ed. M Bate, AM Arias. Cold Spring Harbor Laboratory Press, Plainview, New York.

    Google Scholar 

  19. Queenan AM, Ghabrial A, Schupbach T. 1997. Ectopic activation of torpedo/Egfr, a Drosophila receptor tyrosine kinase, dorsalizes both the eggshell and the embryo. Development 124(19):3871–3880.

    PubMed  CAS  Google Scholar 

  20. Nilson LA, Schupbach T. 1999. EGF receptor signaling in Drosophila oogenesis. Curr Top Dev Biol 44:203–243.

    Article  PubMed  CAS  Google Scholar 

  21. Neuman-Silberberg FS, Schupbach T. 1993. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75(1):165–174.

    Article  PubMed  CAS  Google Scholar 

  22. Montell DJ, Keshishian H, Spradling AC. 1993. Laser ablation studies of the role of the Drosophila oocyte nucleus in pattern formation. Science 254(5029):290–293.

    Article  Google Scholar 

  23. Guichet A, Peri F, Roth S. 2001. Stable anterior anchoring of the oocyte nucleus is required to establish dorsoventral polarity of the Drosophila egg. Dev Biol 237(1):93–106.

    Article  PubMed  CAS  Google Scholar 

  24. Peri F, Roth S. 2000. Combined activities of Gurken and Decapentaplegic specify dorsal chorion structures of the Drosophila egg. Development 127(4):841–850.

    PubMed  CAS  Google Scholar 

  25. Pribyl M, Muratov CB, Shvartsman SY. 2003. Discrete models of autocrine signaling in epithelial layers. Biophys J 83(6):3659–65.

    Google Scholar 

  26. Pribyl M, Muratov CB, Shvartsman SY. 2003. Transitions in the model of epithelial patterning. Dev Dyn 226(1):155–159.

    Article  PubMed  Google Scholar 

  27. Pribyl M, Muratov CB, Shvartsman SY. 2003. Long-range signal transmission in autocrine relays. Biophys J 84(2):883–896.

    PubMed  CAS  Google Scholar 

  28. Shvartsman SY, Wiley HS, Deen WM, Lauffenburger DA. 2001. Spatial range of autocrine signaling: modeling and computational analysis. Biophys J 81(4):1854–1867.

    Article  PubMed  CAS  Google Scholar 

  29. Shvartsman SY, Hagan MP, Yacoub A, Dent P, Wiley HS, Lauffenburger DA. 2002. Autocrine loops with positive feedback enable context-dependent cell signaling. Am J Physiol Cell Physiol 282(3):C545–C559.

    PubMed  CAS  Google Scholar 

  30. Shvartsman SY, Muratov CB, Lauffenburger DA. 2002. Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development 129(11):2577–2589.

    PubMed  CAS  Google Scholar 

  31. Bergmann A, Tugentman M, Shilo H. 2002. Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev Cell 2(2):159–170.

    Article  PubMed  CAS  Google Scholar 

  32. Schweitzer R, Shaharabany M, Seger R, Shilo BZ. 1995. Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev 9(12):1518–1529.

    Article  PubMed  CAS  Google Scholar 

  33. Freeman M. 1997. Cell determination strategies in the Drosophila eye. Development 124(2):261–270.

    PubMed  CAS  Google Scholar 

  34. Pai LM, Barcelo G, Schupbach T. 2000. D-cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell 103(1):51–61.

    Article  PubMed  CAS  Google Scholar 

  35. Peri F, Technau M, Roth S. 2002. Mechanisms of Gurken-dependent pipe regulation and the robustness of dorsoventral patterning in Drosophila. Development 129(12):2965–2975.

    PubMed  CAS  Google Scholar 

  36. James KE, Dorman JB, Berg CA. 2002. Mosaic analyses reveal the function of Drosophila Ras in embryonic dorsoventral patterning and dorsal follicle cell morphogenesis. Development 129(9):209–222.

    Google Scholar 

  37. Dowd CJ, Cooney CL, Nugent MA. 1999. Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding. J Bio Chem 274(8):5236–5244.

    Article  CAS  Google Scholar 

  38. Berg HC. 1983. Random walks in biology. Princeton University Press, Princeton.

    Google Scholar 

  39. Wiley HS. 2003. Trafficking of the ErbB receptors and its influence on signaling. Exp Cell Res 284(1):78–88.

    Article  PubMed  CAS  Google Scholar 

  40. Wiley HS, Burke PM. 2001. Regulation of receptor tyrosine kinase signaling by endocytic trafficking. Traffic 2(1):12–18.

    Article  PubMed  CAS  Google Scholar 

  41. Abramowitz M, Stegun IA. 1964. Handbook of mathematical tables with formulas, graphs, and mathematical tables. Government Printing Office, Washington, DC.

    Google Scholar 

  42. Seto ES, Bellen HJ, Lloyd TE. 2002. When cell biology meets development: endocytic regulation of signaling pathways. Genes Dev. 16(11):1314–1336.

    Article  PubMed  CAS  Google Scholar 

  43. Lloyd TE, Atkinson R, Wu MN, Zhou Y, Pennetta G, Bellen HJ. 2002. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108(2):261–269.

    Article  PubMed  CAS  Google Scholar 

  44. Entchev EV, Gonzalez-Gaitan MA. 2002. Morphogen gradient formation and vesicular trafficking. Traffic 3(2):98–109.

    Article  PubMed  CAS  Google Scholar 

  45. Peri F, Bokel C, Roth S. 1999. Local gurken signaling and dynamic MAPK activation during Drosophila oogenesis. Mech Dev 81(1–2):75–88.

    Article  PubMed  CAS  Google Scholar 

  46. Sapir A, Schweitzer R, Shilo BZ. 1998. Sequential activation of the EGF receptor pathway during Drosophila oogenesis establishes the dorsoventral axis. Development 125(2):191–200.

    PubMed  CAS  Google Scholar 

  47. Hsu T, McRackan D, Vincent TS, Gert de Couet H. 2001. Drosophila Pin1 prolyl isomerase Dodo is a MAP kinase signal responder during oogenesis. Nature Cell Biol 3(6):538–543.

    Article  PubMed  CAS  Google Scholar 

  48. Mantrova EY, Hsu T. 1998. Down-regulation of transcription factor CF2 by Drosophila Ras/MAP kinase signaling in oogenesis: cytoplasmic retention and degradation. Genes Dev 12(8):1166–1175.

    PubMed  CAS  Google Scholar 

  49. Sturtevant MA, Roark M, O’Neill JW, Biehs B, Colley N, Bier E. 1996. The Drosophila rhomboid protein is concentrated in patches at the apical cell surface. Dev Biol 174(2):298–309.

    Article  PubMed  CAS  Google Scholar 

  50. Reich A, Sapir A, Shilo BZ. 1999. Sprouty, a general inhibitor of receptor tyrosine kinase signaling. Development 126(18):413–447.

    Google Scholar 

  51. Deng WM, Bownes M. 1997. Two signalling pathways specify localised expression of the Broad-Complex in Drosophila eggshell patterning and morphogenesis. Development 124(22):4639–4647.

    PubMed  CAS  Google Scholar 

  52. Perrimon N, Duffy, JD. 1998. Developmental biology: sending all the right signals. Nature 396(6706):18–19.

    Article  PubMed  CAS  Google Scholar 

  53. Hinton HE. 1981, Biology of insect eggs, Vol. 1. Pergamon Press, New York.

    Google Scholar 

  54. Dent P, Reardon D, Park J, Bowers G, Logsdon C, Valerie K, Schmidt-Ullrich R. 1999. Radiation-induced release of transforming growth factor-α activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell 10:2493–2506.

    PubMed  CAS  Google Scholar 

  55. Lee H, R Akita W, Sliwkowski MX, Maihle NJ. 2001. A naturally occurring secreted human ErbB3 receptor isoform inhibits heregulin-stimulated activation of ErbB2, ErbB3, and ErbB4. Cancer Res 61(11):4467–4473.

    PubMed  CAS  Google Scholar 

  56. Baron AT, Cora EM, Lafky JM, Boardman CH, Buenafe MC, Rademaker A, Liu D, Fishman DA, Podratz KC, Maihle NJ. 2003. Soluble epidermal growth factor receptor (sEGFR/sErbB1) as a potential risk, screening, and diagnostic serum biomarker of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 12(2):103–13.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Y. Shvartsman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Inc.

About this chapter

Cite this chapter

Goentoro, L.A., Shvartsman, S.Y. (2006). Patterning by EGF Receptor: Models from Drosophila Development. In: Deisboeck, T.S., Kresh, J.Y. (eds) Complex Systems Science in Biomedicine. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33532-2_13

Download citation

Publish with us

Policies and ethics