Spatiotemporal Dynamics of Eukaryotic Gradient Sensing

  • K. K. Subramanian
  • Atul Narang
Part of the Topics in Biomedical Engineering International Book Series book series (ITBE)


The crawling movement of eukaryotic cells in response to a chemical gradient is a complex process involving the orchestration of several subcellular activities. Although a complete description of the mechanisms underlying cell movement remains elusive, the very first step of gradient sensing, enabling the cell to perceive the imposed gradient, is becoming more transparent. The increased understanding of this step has been driven by the discovery that within 5–10 seconds of applying a weak chemoattractant gradient, membrane phosphoinositides, such as PIP3, localize at the front end of the cell, where they activate a process of intense actin polymerization and trigger the extension of a protrusion. This train of events implies that the key to gradient sensing is a mechanistic understanding of the phosphoinositide localization. Since the phosphoinositide distribution is highly localized compared to the shallow chemoattractant gradient, it has been suggested that the cell merely amplifies the chemoattractant gradient. However, this cannot be true since the phosphoinositide localization can display a bewildering array of spatial distributions that bear no resemblance to the external chemoattractant profile. For instance, a single phosphoinositide localization is produced in the face of multiple chemoattractant sources. More surprisingly, the localization forms at a random location even if the chemoattractant concentration is uniform. Here we show that all these seemingly complex dynamics are consistent with the so-called activator-inhibitor class of models. To this end, we formulate and simulate an activator-inhibitor model of gradient sensing based on the phosphoinositide signaling pathways.


Transition Layer Phosphatidic Acid Actin Polymerization Spontaneous Polarization Inositol Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    Martin P. 1997. Wound healing—aiming for perfect skin regeneration. Science, 276:75–81.PubMedCrossRefGoogle Scholar
  2. 2.
    Jones G. 2000. Cellular signaling macrophage migration and chemotaxis. J Leuk Biol 68:593–602.Google Scholar
  3. 3.
    Moore M. 2001. The role of chemoattraction in cancer metastases. Bioessays 23:674–676.PubMedCrossRefGoogle Scholar
  4. 4.
    Lauffenburger DA, Horwitz AF. 1996. Cell migration: a physically integrated molecular process. Cell 84:359–369.PubMedCrossRefGoogle Scholar
  5. 5.
    Tranquillo RT, Lauffenburger DA, Zigmond SH. 1988. A stochastic model for leucocyte random motility and chemotaxis based on receptor-binding fluctuations. J Cell Biol 106:303–309.PubMedCrossRefGoogle Scholar
  6. 6.
    Coates T, Watts R, Hartman R, Howard T. 1992. Relationship of F-actin distribution to development of polar shape in human polymorphonuclear neutrophils. J Cell Biol 117:765–774.PubMedCrossRefGoogle Scholar
  7. 7.
    Welch HCE, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR. 2002. P-Rex1, a PtdIns(3,4,5)P3-and Gβγ-regulated guanine-nucleotide exchange factor for Rac. Cell 108:809–821.PubMedCrossRefGoogle Scholar
  8. 8.
    Tolias KF, Hartwig JH, Ishihara H, Shibasaki Y, Cantley LC, Carpenter CL. 2000. Type Iα phosphatidyl-4-phosphate 5-kinase mediates Rac-dependent assembly. Curr Biol 10:153–156.PubMedCrossRefGoogle Scholar
  9. 9.
    Weiner O, Neilsen P, Prestwich G, Kirschner M, Cantley L, Bourne H. 2002. A PtdInsP(3)-and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell Biol 4:509–513.PubMedCrossRefGoogle Scholar
  10. 10.
    Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y. 1998. Type I phosphatidylinositol 4-phosphate 5-kinases. J Biol Chem 273:8741–8748.PubMedCrossRefGoogle Scholar
  11. 11.
    Willars GB, Nahorski SR, Challiss RAJ. 1998. Differential regulation of muscarinic acid acetylcholine receptor-sensitive polyphosphoinositide pools and consequences for signaling in human neuroblastoma cells. J Biol Chem 273:5037–5046.PubMedCrossRefGoogle Scholar
  12. 12.
    Cockcroft S. 1999. Mammalian phosphatidylinositol transfer proteins: emerging roles in signal transduction and vesicular traffic. Chem Phys Lipids 98:23–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Berridge MJ, Irvine RF. 1989. Inositol phosphates and cell signaling. Nature 34:197–205.CrossRefGoogle Scholar
  14. 14.
    Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR. 2000. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:1037–1040.PubMedCrossRefGoogle Scholar
  15. 15.
    Zigmond SH. 2000. How WASP regulates actin polymerization. J Cell Biol 150:F117–F119.PubMedCrossRefGoogle Scholar
  16. 16.
    Mullins RD. 2000. How WASP-family proteins and the Arp2/3 complex convert intracellular signals into cytoskeletal structures. Curr Opin Cell Biol 12:91–96.PubMedCrossRefGoogle Scholar
  17. 17.
    Borisy GG, Svitkina TM. 2000. Actin machinery: pushing the envelope. Curr Opin Cell Biol 12:104–112.PubMedCrossRefGoogle Scholar
  18. 18.
    Tall EG, Spector I, Pentyala SN, Bitter I, Rebecchi MJ. 2000. Dynamics of phosphatidylinositol 4,5-biphosphate in actin-rich structures. Curr Biol 10:743–746.PubMedCrossRefGoogle Scholar
  19. 19.
    Balla T, Bondeva T, Varnai P. 2000. How accurately can we image inositol lipids in living cells? Trends Pharmacol Sci 21:238–241.PubMedCrossRefGoogle Scholar
  20. 20.
    Lilly PJ, Devreotes PN. 1995. Chemoattractant and GTPγs-medicated stimulation of adenylyl cyclase in Dictyostelium requires translocation of CRAC to membranes. J Cell Biol 129:1659–1665.PubMedCrossRefGoogle Scholar
  21. 21.
    Servant G, Weiner OD, Neptune ER, Sedat JW, Bourne HR. 1999. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol Cell Biol 10:1163–1178.Google Scholar
  22. 22.
    Xiao Z, Zhang N, Murphy DB, Devreotes PN. 1997. Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation. J Cell Biol 139:365–374.PubMedCrossRefGoogle Scholar
  23. 23.
    Ueda M, Sako Y, Tanaka T, Devreotes P, Yanagida T. 2001. Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294:864–867.PubMedCrossRefGoogle Scholar
  24. 24.
    Janetopoulos C, Jin T, Devreotes P. 2001. Receptor-mediated activation of heterotrimeric Gproteins in living cells. Science 291:2408–2411.PubMedCrossRefGoogle Scholar
  25. 25.
    Jin T, Zhang N, Long Y, Parent CA, Devreotes PN. 2000. Localization of the G protein βγ complex in living cells during chemotaxis. Science 287:1034–1036.PubMedCrossRefGoogle Scholar
  26. 26.
    Meili R, Ellsworth C, Lee S, Reddy TBK, Ma H, Firtel RA. 1999. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 18:2092–2105.PubMedCrossRefGoogle Scholar
  27. 27.
    Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN. 1998. G protein signaling events are activated at the leading edge of cells. Cell 95:81–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Haugh JM, Codazzi F, Teruel M, Meyer T. 2000. Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J Cell Biol 151:1269–1279.PubMedCrossRefGoogle Scholar
  29. 29.
    Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho W. 1999. Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein AFR6 in membrane ruffle formation. Cell 99:521–532.PubMedCrossRefGoogle Scholar
  30. 30.
    Zigmond SH, Levitsky HI, Kreel BJ. 1981. Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leucocyte chemotaxis. J Cell Biol 89:585–592.PubMedCrossRefGoogle Scholar
  31. 31.
    Chung CY., Funamoto S, Firtel RA. 2001. Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem Sci 26:557–566.PubMedCrossRefGoogle Scholar
  32. 32.
    Firtel RA, Chung CY. 2000. The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Bioessays 22:603–615.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang F, Herzmark P, Weiner O, Srinivasan S, Servant G, Bourne H. 2002. Lipid products of PI(3)Ks maintain persistent cell polarity directed motility in neutrophils. Nature Cell Biol 4:513–518.PubMedCrossRefGoogle Scholar
  34. 34.
    Wedlich-Soldner R, Li R. 2003. Spontaneous cell polarization: undermining determinism. Nature Cell Biol 5:267–270.PubMedCrossRefGoogle Scholar
  35. 35.
    Othmer H, Schaap P. 1998. Oscillatory camp signaling in the development of Dictyostelium discoideum. Comments Theor Biol 5:175–282.Google Scholar
  36. 36.
    Levchenko A, Iglesias P. 2002. Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J 82:50–63.PubMedGoogle Scholar
  37. 37.
    Rappel W-J, Thomas P, Levine H, Loomis W. 2002. Establishing directing during chemotaxis in eukaryotic cells. Biophys J 83:1361–1367.PubMedGoogle Scholar
  38. 38.
    Meinhardt H. 1999. Orientation of chemotactic cells and growth cones: models and mechanisms. J Cell Sci 112:2867–2874.PubMedGoogle Scholar
  39. 39.
    Narang A, Subramanian KK, Lauffenburger DA. 2001. A mathematical model for chemoattractant gradient sensing based on receptor-regulated membrane phospholipid signaling dynamics. Annu Biomed Eng 29:677–691.CrossRefGoogle Scholar
  40. 40.
    Subramanian KK, Narang A. 2004. A mechanistic model for eucaryotic gradient sensing: spontaneous and induced phosphoinositide polarization. J Theor Biol 231:49–67.PubMedCrossRefGoogle Scholar
  41. 41.
    Postma M, Van Haasert P. 2001. A diffusion-translocation model for gradient sensing by chemotactic cells. Biophys J 81:1314–1323.PubMedCrossRefGoogle Scholar
  42. 42.
    Zigmond SH, Sullivan SJ, Lauffenburger DA. 1982. Kinetic analysis of chemotactic peptide receptor modulation. J Cell Biol 92:34–43.PubMedCrossRefGoogle Scholar
  43. 43.
    NAG fortran library introductory guide, mark 18. 1999. Numerical Algorithms Group, Oxford.Google Scholar
  44. 44.
    Lauffenburger DA, Linderman JJ. 1993. Receptors: model for binding, trafficking and signaling, 1st ed. Oxford UP, New York.Google Scholar
  45. 45.
    Kerner BS, Osipov VV. 1994. Autosolitons: a new approach to problems of self-organization and turbulence, 1st ed. Kluwer Academic Publishers, Dordrecht.Google Scholar
  46. 46.
    Kim J, Soede R, Schaap P, Valkema R, Borleis J, Haastert P, Devreotes P, Hereld D. 1997. Phosphorylation of chemoattractant receptors is not essential for chemotaxis or termination of G-protein-mediated chemotaxis or termination of G-protein-mediated responses. J Biol Chem 272:27313–27318.PubMedCrossRefGoogle Scholar
  47. 47.
    van Rheenan J, Jalink K. 2002. Agonist-induced PIP2 hydrolysis actin dynamics: regulation at a global but not at a micrometer scale. Mol Biol Cell 13:3257–3267.CrossRefGoogle Scholar
  48. 48.
    Doughman R, Firestone A, Wojtasiak M, Bunce M, Anderson R. 2003. Membrane ruffling requires coordination between type Iα phosphatidylinositol phosphate kinase and Rac signaling. J Biol Chem 278:23036–23045.PubMedCrossRefGoogle Scholar
  49. 49.
    Iijima M, Devreotes P. 2002. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109:599–610.PubMedCrossRefGoogle Scholar
  50. 50.
    Funamoto S, Meili R, Lee S, Parry L, Firtel R. 2002. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109:611–623.PubMedCrossRefGoogle Scholar
  51. 51.
    Iijima M, Huang Y, Devreotes P. 2002. Temporal and spatial regulation of chemotaxis. Dev Cell 3:469–478.PubMedCrossRefGoogle Scholar
  52. 52.
    Luo HR, Huang YH, Chen JC, Saiardi A, Iijima M, Ye K, Huang Y, Nagata E, Devreotes P, Snyder SH. 2003. Inositol pyrophosphate mediate chemotaxis in Dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interactions. Cell 114:559–572.PubMedCrossRefGoogle Scholar
  53. 53.
    Li Z, Jiang H, Xie W, Zhang Z, Smrcka A, Wu D. 2000. Roles of PLC-β2 and-β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287:1046–1049.PubMedCrossRefGoogle Scholar
  54. 54.
    Turing A. 1952. The chemical basis of morphogenesis. Phil Trans Roy Soc Lond B 237:37–72.Google Scholar

Copyright information

© Springer Inc. 2006

Authors and Affiliations

  • K. K. Subramanian
    • 1
  • Atul Narang
    • 1
  1. 1.Department of Chemical EngineeringUniversity of FloridaGainesville

Personalised recommendations