Skip to main content

Electronic Cell Environments: Combining Gene, Protein, and Metabolic Networks

  • Chapter
Complex Systems Science in Biomedicine
  • 1914 Accesses

Abstract

Whole-cell modeling is an emerging field of science that takes a systems view of the cell. The grand challenge is to understand, model, and simulate cellular complexity, and by extension, an organism. In this chapter we have tried to outline the raw material for modeling a cell, the advantages and limitations of various modeling strategies, the currently available tools, the biomedical applications, and the prospects for future growth in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. Ashby WR. 1957. An introduction to cybernetics. Chapman and Hall, London.

    Google Scholar 

  2. Bertalanffy L. 1973. General systems theory. Penguin, Harmondsworth.

    Google Scholar 

  3. Bower JM, Bolouri H. 2001. Computational modeling of genetic and biochemical networks. MIT Press, Cambridge.

    Google Scholar 

  4. Brown PA, Botstein D, 1999. Exploring the new world of the genome with DNA microarrays. Nature Genet 21(suppl.):33–37.

    Article  PubMed  CAS  Google Scholar 

  5. De Jong H. 2002. Modeling and simulation of genetic regulatory systems: a literature review. J Comp Biol 9(1):67–103.

    Article  Google Scholar 

  6. Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science 297:1183–1186.

    Article  PubMed  CAS  Google Scholar 

  7. Endy D, Yu L, Yin J, Molineaux IJ. 2000. Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes. Proc Natl Acad Sci USA 97:5375–5380.

    Article  PubMed  CAS  Google Scholar 

  8. Garfinkel D. 1968. The role of computer simulation in biochemistry. Comp Biomed Res 2(1):31.

    Article  CAS  Google Scholar 

  9. Garfinkel D. 1980. Computer modeling complex biological systems and their simplifications. Am J Phys 239(1):R1.

    CAS  Google Scholar 

  10. Garfinkel D. 1985. Computer-based modeling of biological systems which are inherently complex: problems, strategies and methods. Biomed Biochim Acta 44(6):823.

    PubMed  CAS  Google Scholar 

  11. Gatenby RA, Maini PK. 2003. Cancer summed up. Nature 421:321.

    Article  PubMed  CAS  Google Scholar 

  12. Hasty J, McMillen D, Collins JJ. 2002. Engineered gene circuits. Nature 420:224–230.

    Article  PubMed  CAS  Google Scholar 

  13. Hasty J, McMillen D, Isaacs F, Collins JJ. 2001. Computational studies of gene regulatory networks: in numero molecular biology. Nature Rev Genet 2:268–279.

    Article  CAS  Google Scholar 

  14. Heinrich R, Rapoport SM. 1977. Metabolic regulation and mathematical models. Prog Biophys Mol Biol 32:1.

    Article  PubMed  CAS  Google Scholar 

  15. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Igor V, Goryanin I, Hedley WJ, Hodgman TC, Hofmeyr J-H, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J. 2003. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531.

    Article  PubMed  CAS  Google Scholar 

  16. Ideker T, Galitski T, Hood L. 2001. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genetics 2:343–372.

    Article  CAS  Google Scholar 

  17. Kitano H. 2002. Computational systems biology. Nature 420:206–210.

    Article  PubMed  CAS  Google Scholar 

  18. Kitano H. 2002. Systems biology: a brief overview. Science 295:1662–1664.

    Article  PubMed  CAS  Google Scholar 

  19. Lockhart DJ, Winzeler EA. 2000. Genomics, gene expression and DNA arrays. Nature 405:827–836.

    Article  PubMed  CAS  Google Scholar 

  20. McAdams HM, Arkin A. 1998. Simulation of prokaryotic genetic circuits. Annu Rev Biophys Biomol Struct 27:199–224.

    Article  PubMed  CAS  Google Scholar 

  21. McAdams HM, Arkin A. 1999. It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15(2):65–69.

    Article  PubMed  CAS  Google Scholar 

  22. Mesarovic MD. 1968. Systems theory and biology: view of a theoretician. In Systems theory in biology, pp. 59–87. Ed. MD Mesarovic. Springer, New York.

    Google Scholar 

  23. Rao CV, Wolf DM, Arkin AP. 2002. Control, exploitation and tolerance of intracellular noise. Nature 420:231–237.

    Article  PubMed  CAS  Google Scholar 

  24. Rosen R. 1978. Fundamentals of measurement and representation of natural systems. North-Holland, New York.

    Google Scholar 

  25. Savageau MA. 1969a. Biochemical system analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 25:365.

    Article  PubMed  CAS  Google Scholar 

  26. Savageau MA. 1969b. Biochemical system analysis. II. The steady-state solutions for an n-pool system using a power law approximation. J Theor Biol 25:370.

    Article  PubMed  CAS  Google Scholar 

  27. Savageau MA. 1976. Biochemical systems analysis. A study of function and design in molecular biology. Addison-Wesley, Reading, MA.

    Google Scholar 

  28. Schuster S, Dandekar T, Fell DA. 1999. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 18:326–332.

    Google Scholar 

  29. Schuster S, Fell D, Dandekar T. 2000. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol 18:326–332.

    Article  CAS  Google Scholar 

  30. Takahashi K, Yugi K, Hashimoto K, Yamada Y, Pickett C, Tomita M. 2002. Computational challenges in cell simulation: a software engineering approach. IEEE Intelligent Syst 17(5):64–71.

    Article  Google Scholar 

  31. Takahashi K, Ishikawa N, Sadamoto Y, Sasamoto H, Ohta S, Shiozawa A, Miyoshi M, Naito Y, Nakayama Y, Tomita M. In press. E-Cell 2: multi-platform E-Cell simulation system. Bioinformatics.

    Google Scholar 

  32. Tomita M. 2001. Whole cell simulation: a grand challenge of the 21st century. Trends Biotechnol 19:205–210.

    Article  PubMed  CAS  Google Scholar 

  33. Tomita M. 2002. Towards computer aided design (CAD) of useful microorganisms. Bioinformatics 17:1091–1092.

    Article  Google Scholar 

  34. Tomita M, Hashimoto K, Takahashi K, Shimizu T, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchinson CA. 1999. E-Cell: software environment for whole cell simulation. Bioinformatics 15(1):72–84.

    Article  PubMed  CAS  Google Scholar 

  35. Voit EO. 2000. Computational analysis of biochemical systems: a practical guide for biochemists and molecular biologists. Cambridge University, Cambridge.

    Google Scholar 

  36. Voit EO. 2002. Models-of-data and models-of-processes in the post-genomic era. Math Biosci 180:263–274.

    Article  PubMed  Google Scholar 

  37. Welch GR, Easterby JS. 1994. Metabolic channeling versus free diffusion: transition-time analysis. Trends Biochem Sci 19:193–197.

    Article  PubMed  CAS  Google Scholar 

  38. Wiener N. 1948 Cybernetics: control and communication in animal and the machine. Wiley & Sons, New York.

    Google Scholar 

  39. Wolkenhauer O. 2001. Systems biology: the reincarnation of systems theory applied in biology? Briefings in Bioinformatics 2(3):258–270.

    Article  PubMed  CAS  Google Scholar 

  40. Edwards JS, Palsson BØ. 2000. The Escherichia coli MG1655 in silico; metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97:5528–5533.

    Article  PubMed  CAS  Google Scholar 

  41. Selkov E, Basmanova S, Gaasterland T, Goryanin I, Gretchkin Y, Maltsev N, Nenashev V, Overbeek R, Panyushkina E, Pronevitch L, Selkov Jr E, Yunus I. 1996. The metabolic pathway collection from EMP: the enzymes and metabolic pathways database. Nucleic Acids Res 24(1):26–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tomita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Inc.

About this chapter

Cite this chapter

Dhar, P., Tomita, M. (2006). Electronic Cell Environments: Combining Gene, Protein, and Metabolic Networks. In: Deisboeck, T.S., Kresh, J.Y. (eds) Complex Systems Science in Biomedicine. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33532-2_10

Download citation

Publish with us

Policies and ethics