Skip to main content

Part of the book series: Monograph Series in Underwater Acoustics ((UA))

  • 3095 Accesses

Abstract

The goal of both passive and active sonar systems is reliable long- range detection and ranging capability, but the basic considerations that influence performance of the two types of sonar are quite different. The receiving array in passive systems such as towed arrays or wide aperture ranging arrays must be able to detect signals with unknown frequency content, and therefore must operate over a frequency band much greater than the band of a typical active system. And they must do so in the presence of interfering noise. Chap. 4 shows that there are many ways to design hydrophones with adequate broadband sensitivity that are small, lightweight, and inexpensive compared to the high-power projectors needed for active sonar. But the main problem in passive sonar is control of the interfering noise, especially in ship-mounted arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.H. Schloemer, “Technology Development of Submarine Sonar Hull Arrays,” Naval Undersea Warfare Center Division Newport, Technical Digest, September 1999 [Distribution authorized to DOD components only]. Also Presentation at Undersea Defense Technology Conference and Exhibition, Sydney, Australia, Feb 7, 2000

    Google Scholar 

  2. I.Dyer, “Ocean Ambient Noise,” Encyclopedia of Acoustics, John Wiley and Sons, New York, Vol. 1, p. 549, 1997

    Google Scholar 

  3. Sung-Hwan Ko, Sangwoo Pyo and Woojae Seong, Structure-Borne and Flow Noise Reductions (Mathematical Modeling), Seoul National University Press, Seoul, Korea, 2001

    Google Scholar 

  4. D. Ross, “Mechanics of Underwater Noise,” Peninsula Publishing, Los Altos Hills, CA, 1987

    Google Scholar 

  5. W.A. Strawderman, “Wavevector-Frequency Analysis with Applications to Acoustics,” U. S. Government Printing Office, undated

    Google Scholar 

  6. V.M. Albers, “Underwater Acoustics Handbook,” The Pennsylvania State University Press, 1960

    Google Scholar 

  7. W.S. Burdic, Underwater Acoustic System Analysis, Second Edition, Prentice Hall, New Jersey, 1991

    Google Scholar 

  8. J.W. Horton, Fundamentals of Sonar, Second Edition, U. S. Naval Institute, 1959

    Google Scholar 

  9. A.A. Michelson, “A reciprocal relation in diffraction,” Phil. Mag. 9, 506–507 (1905)

    MATH  Google Scholar 

  10. N. Davids, E.G. Thurston, and R.E. Meuser, “The design of optimum directional acoustic arrays,” J. Acoust. Soc. Am., 24, 50–56 (1952)

    Article  ADS  Google Scholar 

  11. R.L. Pritchard, “Optimum directivity patterns for linear point arrays,” J. Acoust. Soc. Am., 25, 879–891 (1953)

    Article  ADS  Google Scholar 

  12. W. Thompson, Jr., “Higher powers of pattern functions—A beam pattern synthesis technique,” J. Acoust. Soc. Am., 49, 1686–1687 (1971)

    Article  ADS  Google Scholar 

  13. C.L. Dolph, “A current distribution of broadside arrays which optimizes the relationship between beam width and side lobe level,” Proc. Inst. Radio Engrs., 34, 335–348 (1946)

    Google Scholar 

  14. R.J. Urick, “Principles of Underwater Sound,” Third Edition, Peninsula Publishing, Los Altos Hills, CA, 1983

    Google Scholar 

  15. T.T. Taylor, “Design of line source antennas for narrow beam width and low side lobes” IRE Trans., AP-3, 316 (1955)

    Google Scholar 

  16. O.B. Wilson, “An Introduction to the Theory and Design of Sonar Transducers,” U. S. Government Printing Office, 1985

    Google Scholar 

  17. R.L. Pritchard, “Approximate calculation of the directivity index of linear point arrays,” J. Acoust. Soc. Am., 25, 1010–1011 (1953)

    Article  ADS  Google Scholar 

  18. R.L. Pritchard, “Maximum directivity of a linear point array,” J. Acoust. Soc. Am., 26, 1034–1039 (1954)

    Article  ADS  Google Scholar 

  19. G. Maidanik and D.W. Jorgensen, “Boundary wave-vector filters for the study of the pressure field in a turbulent boundary layer,” J. Acoust. Soc. Am., 42, 494–501 (1967)

    Article  ADS  Google Scholar 

  20. W.K. Blake and D.M. Chase, “Wavenumber–frequency spectra of turbulent-boundarylayer pressure measured by microphone arrays,” J. Acoust. Soc. Am., 49, 862–877 (1971)

    Article  ADS  Google Scholar 

  21. D.H. Trivett, L.D. Luker, S. Petrie, A.L. VanBuren, and J.E. Blue, “A planar array for the generation of evanescent waves,” J. Acoust. Soc. Am., 87, 2535–2540 (1990)

    Article  ADS  Google Scholar 

  22. C.H. Sherman, S.H. Ko, and B.G. Buehler, “ Measurement of the Turbulent Boundary Layer Wave-Vector Spectrum,” J. Acoust. Soc. Am., 88, 386–390 (1990)

    Article  ADS  Google Scholar 

  23. J.S. Bendat and A.G. Piersol, Engineering Applications of Correlation and Spectral Analysis, John Wiley & Sons, New York, N Y, 1993

    Google Scholar 

  24. J.L. Butler and C.H. Sherman, “Acoustic radiation from partially coherent line sources,” J. Acoust. Soc. Am., 47, 1290–1296 (1970)

    Article  ADS  Google Scholar 

  25. D.J. Kewley, D.G. Browning, and W.M. Carey, “Low-frequency wind-generated ambient noise source levels,” J. Acoust. Soc. Am., 88, 1894–1902 (1990)

    Article  ADS  Google Scholar 

  26. G.M. Wenz, “Acoustic ambient noise in the ocean: spectra and sources,” J. Acoust. Soc. Am., 34, 1936–1956 (1962)

    Article  ADS  Google Scholar 

  27. V.O. Knudsen, R.S. Alford, and J.W. Emling, “Underwater ambient noise,” J. Marine Res., 7, 410 (1948)

    Google Scholar 

  28. H.W. Marsh, “Origin of the Knudsen spectra,” J. Acoust. Soc. Am., 35, 409 (1963)

    Article  ADS  Google Scholar 

  29. E.H. Axelrod, B.A. Schoomer and W.A. Von Winkle, “Vertical directionality of ambient noise in the deep ocean at a site near Bermuda,” J. Acoust. Soc. Am., 37, 77–83 (1965)

    Article  ADS  Google Scholar 

  30. B.F. Cron, B.C. Hassel and F.J. Keltonic, “Comparison of theoretical and experimental values of spatial correlation,” U. S. Navy Underwater Sound Lab. Rept. 596, 1963 and J. Acoust. Soc. Am., 37, 523–529 (1965)

    Article  ADS  Google Scholar 

  31. B.F. Cron and C.H. Sherman, “Spatial-correlation functions for various noise models,” J. Acoust. Soc. Am., 34, 1732–1736 (1962); Addendum: J. Acoust. Soc. Am., 38, 885 (1965)

    Article  ADS  Google Scholar 

  32. J.E. Barger, “Sonar Systems,” Encyclopedia of Acoustics, John Wiley and Sons, New York, Vol. 1, p. 559, 1997, Sect. 3.1

    Google Scholar 

  33. R.L. Pritchard, “Mutual acoustic impedance between radiators in an infinite rigid plane” J. Acoust. Soc. Am., 32, 730–737 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  34. M.C. Junger and D. Feit, “Sound, Structures and Their Interaction,” MIT Press, Cambridge Mass., Second Edition, 1986

    Google Scholar 

  35. G.M. Corcos, “The Structure of the turbulent pressure field in boundary layer flows,” J. Fluid Mechanics, 18 (1964)

    Google Scholar 

  36. D. M Chase, “Modeling the wave-vector frequency spectrum of turbulent boundary wall pressure,” J. Sound and Vibration, 70 (1980)

    Google Scholar 

  37. G.C. Lauchle, “Calculation of turbulent boundary layer wall pressure spectra” J. Acoust. Soc. Am., 98, 2226–2234 (1995)

    Article  ADS  Google Scholar 

  38. G.C. Lauchle, “Noise generated by axisymmetric turbulent boundary-layer flow,” J. Acoust. Soc. Am., 61, 694–703 (1977)

    Article  ADS  Google Scholar 

  39. N.C. Martin and P. Leehey, “Low wavenumber wall pressure measurements using a rectangular membrane as a spatial filter” J. Sound and Vibration, 52, No.1 (1997)

    Google Scholar 

  40. J.J.Faran, Jr and R. Hills, Jr, “Wide-band directivity of receiving arrays,” J. Acoust. Soc. Am., 57, 1300–1308 (1975)

    Article  ADS  Google Scholar 

  41. S.H. Ko and H.H. Schloemer, “Signal pressure received by a hydrophone placed on a plate backed by a compliant baffle,” J. Acoust. Soc. Am., 89, 559–564 (1991)

    Article  ADS  Google Scholar 

  42. M.A. Gonzalez, “Analysis of a composite compliant baffle,” J. Acoust. Soc. Am., 64, 1509–1513 (1978)

    Article  ADS  MATH  Google Scholar 

  43. S.H. Ko and C.H. Sherman, “Flexural wave baffling,” J. Acoust. Soc. Am., 66 566–570 (1979)

    Article  ADS  Google Scholar 

  44. R.P. Radlinski and R.S. Janus, “Scattering from two and three gratings of densely packed compliant tubes,” J. Acoust. Soc. Am., 80, 1803–1809 (1986)

    Article  ADS  Google Scholar 

  45. S.H. Ko and H.H. Schloemer, “Calculations of turbulent boundary layer pressure fluctuations transmitted into a viscoelastic layer,” J. Acoust. Soc. Am., 85, No. 4 (1989)

    Google Scholar 

  46. S.H. Ko and H.H. Schloemer, “Flow noise reduction techniques for a planar array of hydrophones,” J. Acoust. Soc. Am., 92, 3409–3424 (1992)

    Article  ADS  Google Scholar 

  47. W. Thompson, Jr. and R.E. Montgomery, “Approximate evaluation of the spectral density integral for a large planar array of rectangular sensors excited by turbulent flow,” J. Acoust. Soc. Am., 93, 3201–3207 (1993)

    Article  ADS  Google Scholar 

  48. Acoustic Particle Velocity Sensors: Design, Performance and Applications, AIP Conference Proceedings 368, Mystic CT, Sept. 1995, Editors: M.J. Berliner, and J.F. Lindberg

    Google Scholar 

  49. Proceedings of the Workshop on Directional Acoustic Sensors, Newport, R I, 17–18 April 2001(Available on CD)

    Google Scholar 

  50. E.Y. Lo and M.C. Junger, “Signal-to-noise enhancement by underwater intensity measurements,” J. Acoust. Soc. Am., 82, 1450–1454 (1987)

    Article  ADS  Google Scholar 

  51. D. Huang and R.C. Elswick, “Acoustic pressure-vector sensor array,” J. Acoust. Soc. Am., 115, 2620 (2004) (Abstract)

    Google Scholar 

  52. B.A.Cray and A.H. Nuttall, “A Comparison of vector-sensing and scalar-sensing linear arrays,” Report No. 10632, Naval UnderseaWarfare Center, Newport, RI, Jan. 27, 1997

    Google Scholar 

  53. R. Kneipfer, “Spatial auto and cross-correlation functions for tri-axial velocity sensor outputs in a narrowband, 3 dimensional, isotropic pressure field,” Naval Undersea Warfare Center, Newport, RI, Memo. 5214/87, Sept., 1985

    Google Scholar 

  54. M. Hawkes and A. Nehorai, “Acoustic vector sensor correlations in ambient noise,” IEEE J. Oceanic Eng., 26, 337–347 (2001)

    Article  Google Scholar 

  55. H.W. Marsh, “Correlation in Wave Fields,” U. S. Navy Underwater Sound Laboratory Quart. Rept., pp. 63–68, 31 March 1950

    Google Scholar 

  56. B. A Cray, “Directional acoustic receivers: signal and noise characteristics,”Workshop on Directional Acoustic Sensors, Newport, RI, 17–18 April, 2001

    Google Scholar 

  57. S.H. Ko, “Performance of velocity sensor for flexural wave reduction” Acoustic Particle Velocity Sensors: Design, Performance and Applications, AIP Conference Proceedings 368, M.J. Berliner and J.F. Lindberg, Editors, AIP Press, Woodbury, New York, 1996

    Google Scholar 

  58. R.F. Keltie, “Signal response of elastically coated plates,” J. Acoust. Soc. Am., 103, 1855–1863 (1998)

    Article  ADS  Google Scholar 

  59. B.A. Cray and R.A. Christman, “Acoustic and vibration performance evaluations of a velocity sensing hull array,” Acoustic Particle Velocity Sensors: Design, Performance and Applications, AIP Conference Proceedings 368, M.J. Berliner and J.F. Lindberg, Editors, AIP Press, Woodbury, New York, 1996

    Google Scholar 

  60. N.C. Martin, R.N. Dees, and D.A. Sachs, “Baffle characteristics: effects of sensor size and mass,” AIP Conference Proceedings 368

    Google Scholar 

  61. J.J. Caspall, M.D. Gray, G.W. Caille, J.Jarzynski, P.H. Rogers, and G.S. McCall II, “Laser Vibrometer Analysis of Sensor Loading Effects in Underwater Measurements of Compliant Surface Motion,” AIP Conference Proceedings 368

    Google Scholar 

  62. M. Traweek, J. Polcari, and D. Trivett, “Noise audit model for acoustic vector sensor arrays on an ocean glider,” J. Acoust. Soc. Am., 116, No. 4, Pt.2, 2650 (2004)

    Google Scholar 

  63. B.M. Abraham and M.J. Berliner, “Directional hydrophones in towed systems,”Workshop on Directional Acoustic Sensors, Newport, R.I., 17–18 April, 2001

    Google Scholar 

  64. G.C. Lauchle, J.F. McEachern, A.R. Jones, and J. A, McConnell, “Flow-induced noise on pressure gradient hydrophones,” AIP Conference Proceedings 368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sherman, C.H., Butler, J.L. (2007). Hydrophone Arrays. In: Transducers and Arrays for Underwater Sound. Monograph Series in Underwater Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33139-3_6

Download citation

Publish with us

Policies and ethics