Advertisement

SynCAM in Formation and Function of Synaptic Specializations

  • Thomas Biederer

1. Summary

SynCAM 1 (Synaptic Cell Adhesion Molecule 1), a member of the immunoglobulin (Ig) superfamily of proteins, is an intercellular adhesion molecule at synapses in the central nervous system (CNS). It mediates interactions that bridge the synaptic cleft between pre- and postsynaptic membranes. SynCAM 1 has an active role in synaptic differentiation and induces formation of new presynaptic terminals. In keeping with this activity, SynCAM 1 is expressed throughout the developing brain, indicating a general role in synaptogenesis. SynCAM 1 is a member of a family of four genes found solely in vertebrates. The domain structure of all SynCAM family members is well defined. Three Ig-like domains constitute their extracellular sequence, followed by a single transmembrane region and a short cytosolic tail. Their intracellular sequences display an interaction motif for PDZ domain-containing adaptor molecules and for components of the actin cytoskeleton. These cytosolic protein interaction motifs are highly conserved among all four SynCAM proteins, underscoring their important role in mediating membrane differentiation.

Keywords

Synaptic Vesicle Synaptic Vesicle Recycling Presynaptic Specialization Synaptic Cell Adhesion Molecule Intracellular Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. 1.
    Fletcher, T.L., Cameron, P., De Camilli, P., and Banker, G. (1991) J Neurosci 11, 1617–1626.PubMedGoogle Scholar
  2. 2.
    Williams, A.F., and Barclay, A.N. (1988) Ann Rev Immunol 6, 381–405.Google Scholar
  3. 3.
    Rougon, G., and Hobert, O. (2003) Ann Rev Neurosci 26, 207–238.PubMedCrossRefGoogle Scholar
  4. 4.
    Tessier-Lavigne, M., and Goodman, C.S. (1996) Science 274, 1123–1133.PubMedCrossRefGoogle Scholar
  5. 5.
    Walsh, F.S., and Doherty, P. (1997) Ann Rev Cell Developl Biol 13, 425–456.CrossRefGoogle Scholar
  6. 6.
    Yu, T.W., and Bargmann, C.I. (2001) Nat Neurosci 4, 1169–1176.PubMedCrossRefGoogle Scholar
  7. 7.
    Bastiani, M.J., Harrelson, A.L., Snow, P.M., and Goodman, C.S. (1987) Cell 48, 745–755.PubMedCrossRefGoogle Scholar
  8. 8.
    Harrelson, A.L., and Goodman, C.S. (1988) Science 242, 700–708.PubMedCrossRefGoogle Scholar
  9. 9.
    Schuster, C.M., Davis, G.W., Fetter, R.D., and Goodman, C.S. (1996) Neuron 17, 641–654.PubMedCrossRefGoogle Scholar
  10. 10.
    Stewart, B.A., Schuster, C.M., Goodman, C.S., and Atwood, H.L. (1996) J Neurosci 16, 3877–3886.PubMedGoogle Scholar
  11. 11.
    Davis, G.W., Schuster, C.M., and Goodman, C.S. (1997) Neuron 19, 561–573.PubMedCrossRefGoogle Scholar
  12. 12.
    Baines, R.A., Seugnet, L., Thompson, A., Salvaterra, P.M., and Bate, M. (2002) J Neurosci 22, 6587–6595.PubMedGoogle Scholar
  13. 13.
    Shen, K., and Bargmann, C.I. (2003) Cell 112, 619–630.PubMedCrossRefGoogle Scholar
  14. 14.
    Shen, K., Fetter, R.D., and Bargmann, C.I. (2004) Cell 116, 869–881.PubMedCrossRefGoogle Scholar
  15. 15.
    Yamagata, M., Weiner, J.A., and Sanes, J.R. (2002) Cell 110, 649–660.PubMedCrossRefGoogle Scholar
  16. 16.
    Nguyen, T., and Südhof, T.C. (1997) J Biol Chem 272, 26032–26039.PubMedCrossRefGoogle Scholar
  17. 17.
    Scheiffele, P., Fan, J., Choih, J., Fetter, R., and Serafini, T. (2000) Cell 101, 657–669.PubMedCrossRefGoogle Scholar
  18. 18.
    Dean, C., Scholl, F.G., Choih, J., DeMaria, S., Berger, J., Isacoff, E., and Scheiffele, P. (2003) Nature Neurosci 6, 708–716.PubMedCrossRefGoogle Scholar
  19. 19.
    Graf, E.R., Zhang, X., Jin, S.-X., Linhoff, M.W., and Craig, A.M. (2004) Cell 119, 1013–1026.PubMedCrossRefGoogle Scholar
  20. 20.
    Chih, B., Engelman, H., and Scheiffele, P. (2005) Science, 1324–1328.Google Scholar
  21. 21.
    Levinson, J.N., Chery, N., Huang, K., Wong, T.P., Gerrow, K., Kang, R., Prange, O., Wang, Y.T., and El-Husseini, A. (2005) J Biol Chem 280, 17312–17319.PubMedCrossRefGoogle Scholar
  22. 22.
    Biederer, T., Sara, Y., Mozhayeva, M., Atasoy, D., Liu, X., Kavalali, E.T., and Südhof, T.C. (2002) Science 297, 1525–1531.PubMedCrossRefGoogle Scholar
  23. 23.
    Hung, A.Y., and Sheng, M. (2002) J Biol Chem 277, 5699–5702.PubMedCrossRefGoogle Scholar
  24. 24.
    Montgomery, J.M., Zamorano, P.L., and Garner, C.C. (2004) Cell Molec Life Sci 61, 911–929.PubMedCrossRefGoogle Scholar
  25. 25.
    Kim, E., and Sheng, M. (2004) Nat Rev Neurosci 5, 771–781.PubMedCrossRefGoogle Scholar
  26. 26.
    Gomyo, H., Arai, Y., Tanigami, A., Murakami, Y., Hattori, M., Hosoda, F., Arai, K., Aikawa, Y., Tsuda, H., Hirohashi, S., Asakawa, S., Shimizu, N., Soeda, E., Sakaki, Y., and Ohki, M. (1999) Genomics 62, 139–146.PubMedCrossRefGoogle Scholar
  27. 27.
    Pletcher, M.T., Nobukuni, T., Fukuhara, H., Kuramochi, M., Maruyama, T., Sekiya, T., Sussan, T., Isomura, M., Murakami, Y., and Reeves, R.H. (2001) Gene 273, 181–189.PubMedCrossRefGoogle Scholar
  28. 28.
    Kuramochi, M., Fukuhara, H., Nobukuni, T., Kanbe, T., Maruyama, T., Ghosh, H.P., Pletcher, M., Isomura, M., Onizuka, M., Kitamura, T., Sekiya, T., Reeves, R.H., and Murakami, Y. (2001) Nat Genet 27, 427–430.PubMedCrossRefGoogle Scholar
  29. 29.
    Wakayama, T., Ohashi, K., Mizuno, K., and Iseki, S. (2001) Molec Reprod Develop 60, 158–164.CrossRefGoogle Scholar
  30. 30.
    Urase, K., Soyama, A., Fujita, E., and Momoi, T. (2001) Neuroreport 12, 3217–3221.PubMedCrossRefGoogle Scholar
  31. 31.
    Biederer, T. (2006) Genomics 87, 139–150.PubMedCrossRefGoogle Scholar
  32. 32.
    Biederer, T., and colleagues, unpublished observation.Google Scholar
  33. 33.
    Hoover, K.B., and Bryant, P.J. (2000) Curr Opin Cell Biol 12, 229–234.PubMedCrossRefGoogle Scholar
  34. 34.
    Marfatia, S.M., Leu, R.A., Branton, D., and Chishti, A.H. (1995) J Biol Chem 270, 715–719.PubMedCrossRefGoogle Scholar
  35. 35.
    Hemming, N.J., Anstee, D.J., Staricoff, M.A., Tanner, M.J., and Mohandas, N. (1995) J Biol Chem 270, 5360–5366.PubMedCrossRefGoogle Scholar
  36. 36.
    Workman, R.F., and Low, P.S. (1998) J Biol Chem 273, 6171–6176.PubMedCrossRefGoogle Scholar
  37. 37.
    Biederer, T., and Südhof, T.C. (2001) J Biol Chem 276, 47869–47876.PubMedGoogle Scholar
  38. 38.
    Songyang, Z., Fanning, A.S., Fu, C., Xu, J., Marfatia, S.M., Chishti, A.H., Crompton, A., Chan, A.C., Anderson, J.M., and Cantley, L.C. (1997) Science 275, 73–77.PubMedCrossRefGoogle Scholar
  39. 39.
    Fukami, T., Satoh, H., Fujita, E., Maruyama, T., Fukuhara, H., Kuramochi, M., Takamoto, S., Momoi, T., and Murakami, Y. (2002) Gene 295, 7–12.PubMedCrossRefGoogle Scholar
  40. 40.
    Fiala, J.C., Feinberg, M., Popov, V., and Harris, K.M. (1998) J Neurosci 18, 8900–8911.PubMedGoogle Scholar
  41. 41.
    Harris, K.M., Jensen, F.E., and Tsao, B. (1992) J Neurosci 12, 2685–2705.PubMedGoogle Scholar
  42. 42.
    Sara, Y., Biederer, T., Atasoy, D., Chubykin, A., Mozhayeva, M.G., Südhof, T.C., and Kavalali, E.T. (2005) J Neurosci 25, 260–270.PubMedCrossRefGoogle Scholar
  43. 43.
    Fletcher, T.L., De Camilli, P., and Banker, G. (1994) J Neurosci 14, 6695–6706.PubMedGoogle Scholar
  44. 44.
    Rizzoli, S.O., Richards, D.A., and Betz, W.J. (2003) J Neurocyt 32, 539–549.CrossRefGoogle Scholar
  45. 45.
    Mozhayeva, M.G., Sara, Y., Liu, X.R., and Kavalali, E.T. (2002) J Neurosci 22, 654–665.PubMedGoogle Scholar
  46. 46.
    Biederer, T., and Südhof, T.C. (2000) J Biol Chem 275, 39803–39806.PubMedCrossRefGoogle Scholar
  47. 47.
    Butz, S., Okamoto, M., and Südhof, T.C. (1998) Cell 94, 773–782.PubMedCrossRefGoogle Scholar
  48. 48.
    Tabuchi, K., Biederer, T., Butz, S., and Südhof, T.C. (2002) J Neurosci 22, 4264–4273.PubMedGoogle Scholar
  49. 49.
    Furuno, T., Ito, A., Koma, Y.-I., Watabe, K., Yokozaki, H., Bienenstock, J., Nakanishi, M., and Kitamura, Y. (2005) J Immunol 174, 6934–6942.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Thomas Biederer
    • 1
  1. 1.Department of Molecular Biophysics and BiochemistryYale University Medical SchoolNew HavenUSA

Personalised recommendations