Cadherin-Mediated Adhesion and Signaling During Vertebrate Central Synapse Formation

  • Tonya R. Anderson
  • Deanna L. Benson

1. Summary

The events that encompass synaptogenesis—growth cone guidance, axonal and dendritic arborization, dendritic spine growth, even neurotransmitter release, and receptor dynamics—all are calcium-dependent processes. As calcium-dependent molecules, the members of the cadherin superfamily are particularly well suited to mediate shifting requirements for adhesion during these dynamic events. These molecules, which are thought to bind homophilically across synapses, couple to the actin-based cytoskeleton as well as synaptic vesicles, ion channels, and neurotransmitter receptors. Given these biochemical features, it is not surprising that manipulating cadherin functions compromises normal synapse maturation and plasticity alike. Although the contributions of individual family members to synaptogenesis appear to differ to varying degrees, their fundamental roles in calcium-dependent junctional maintenance are ontogenetically and phylogenetically conserved.


Hippocampal Neuron Classic Cadherins Mediate ADHE SION Cadherin Adhesion Cadherin Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. 1.
    Fannon, A.M., and Colman, D.R. (1996) Neuron 17, 423–434.PubMedCrossRefGoogle Scholar
  2. 2.
    Uchida, N., Honjo, Y., Johnson, K.R., Wheelock, M.J., and Takeichi, M. (1996) J Cell Biol 135, 767–779.PubMedCrossRefGoogle Scholar
  3. 3.
    Landis, D.M., and Reese, T.S. (1974) J Comp Neurol 155, 93–125.PubMedCrossRefGoogle Scholar
  4. 4.
    Peters, A., Palay, S.L., and Webster, H.D. (1991) The Fine Structure of the Nervous System, Oxford University Press, New York.Google Scholar
  5. 5.
    Benson, D.L., Colman, D.R., and Huntley, G.W. (2001) Nat Rev Neurosci 2, 899–909.PubMedCrossRefGoogle Scholar
  6. 6.
    Tepass, U., Truong, K., Godt, D., Ikura, M., and Peifer, M. (2000) Nat Rev Mol Cell Biol 1, 91–100.PubMedCrossRefGoogle Scholar
  7. 7.
    Shapiro, L., Fannon, A.M., Kwong, P.D., Thompson, A., Lehmann, M.S., Grubel, G., Legrand, J.F., Als-Nielsen, J., Colman, D.R., and Hendrickson, W.A. (1995) Nature 374, 327–337.PubMedCrossRefGoogle Scholar
  8. 8.
    Overduin, M., Harvey, T.S., Bagby, S., Tong, K.I., Yau, P., Takeichi, M., and Ikura, M. (1995) Science 267, 386–389.PubMedCrossRefGoogle Scholar
  9. 9.
    Chappuis-Flament, S., Wong, E., Hicks, L.D., Kay, C.M., and Gumbiner, B.M. (2001) J Cell Biol 154, 231–243.PubMedCrossRefGoogle Scholar
  10. 10.
    Takeichi, M. (1977) J Cell Biol 75, 464–474.PubMedCrossRefGoogle Scholar
  11. 11.
    Boggon, T.J., Murray, J., Chappuis-Flament, S., Wong, E., Gumbiner, B.M., and Shapiro, L. (2002) Science 296, 1308–1313.PubMedCrossRefGoogle Scholar
  12. 12.
    Marambaud, P., Shioi, J., Serban, G., Georgakopoulos, A., Sarner, S., Nagy, V., Baki, L., Wen, P., Efthimiopoulos, S., Shao, Z., Wisniewski, T., and Robakis, N.K. (2002) EMBO J 21, 1948–1956.PubMedCrossRefGoogle Scholar
  13. 13.
    Yap, A.S., Niessen, C.M., and Gumbiner, B.M. (1998) J Cell Biol 141, 779–789.PubMedCrossRefGoogle Scholar
  14. 14.
    Bamji, S.X., Shimazu, K., Kimes, N., Huelsken, J., Birchmeier, W., Lu, B., and Reichardt, L.F. (2003) Neuron 40, 719–731.PubMedCrossRefGoogle Scholar
  15. 15.
    Togashi, H., Abe, K., Mizoguchi, A., Takaoka, K., Chisaka, O., and Takeichi, M. (2002) Neuron 35, 77–89.PubMedCrossRefGoogle Scholar
  16. 16.
    Blaschuk, O.W., Sullivan, R., David, S., and Pouliot, Y. (1990) Dev Biol 139, 227–229.PubMedCrossRefGoogle Scholar
  17. 17.
    Renaud-Young, M., and Gallin, W.J. (2002) J Biol Chem 277, 39609–39616.PubMedCrossRefGoogle Scholar
  18. 18.
    Gumbiner, B.M. (2005) Nat Rev Mol Cell Biol 6, 622–634.PubMedCrossRefGoogle Scholar
  19. 19.
    Vestal, D.J., and Ranscht, B. (1992) J Cell Biol 119, 451–461.PubMedCrossRefGoogle Scholar
  20. 20.
    Nagafuchi, A., and Takeichi, M. (1988) EMBO J 7, 3679–3684.PubMedGoogle Scholar
  21. 21.
    Arregui, C., Pathre, P., Lilien, J., and Balsamo, J. (2000) J Cell Biol 149, 1263–1274.PubMedCrossRefGoogle Scholar
  22. 22.
    Lambert, M., Choquet, D., and Mege, R.M. (2002) J Cell Biol 157, 469–479.PubMedCrossRefGoogle Scholar
  23. 23.
    Noren, N.K., Arthur, W.T., and Burridge, K. (2003) J Biol Chem 278, 13615–13618.PubMedCrossRefGoogle Scholar
  24. 24.
    Dunah, A.W., Hueske, E., Wyszynski, M., Hoogenraad, C.C., Jaworski, J., Pak, D.T., Simonetta, A., Liu, G., and Sheng, M. (2005) Nat Neurosci 8, 458–467.PubMedGoogle Scholar
  25. 25.
    Tanaka, H., Shan, W., Phillips, G.R., Arndt, K., Bozdagi, O., Shapiro, L., Huntley, G.W., Benson, D.L., and Colman, D.R. (2000) Neuron 25, 93–107.PubMedCrossRefGoogle Scholar
  26. 26.
    Gorski, J.A., Gomez, L.L., Scott, J.D., and Dell’Acqua, M.L. (2005) Mol Biol Cell 16, 3574–3590.PubMedCrossRefGoogle Scholar
  27. 27.
    Gil, O.D., Needleman, L., and Huntley, G.W. (2002) J Comp Neurol 453, 372–388.PubMedCrossRefGoogle Scholar
  28. 28.
    Benson, D.L., and Tanaka, H. (1998) J Neurosci 18, 6892–6904.PubMedGoogle Scholar
  29. 29.
    Elste, A.M., and Benson, D.L. (2006) J Comp Neurol 495, 324–335.PubMedCrossRefGoogle Scholar
  30. 30.
    Shapira, M., Zhai, R.G., Dresbach, T., Bresler, T., Torres, V.I., Gundelfinger, E.D., Ziv, N.E., and Garner, C.C. (2003) Neuron 38, 237–252.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhai, R.G., Vardinon-Friedman, H., Cases-Langhoff, C., Becker, B., Gundelfinger, E.D., Ziv, N.E., and Garner, C.C. (2001) Neuron 29, 131–143.PubMedCrossRefGoogle Scholar
  32. 32.
    Jontes, J.D., Emond, M.R., and Smith, S.J. (2004) J Neurosci 24, 9027–9034.PubMedCrossRefGoogle Scholar
  33. 33.
    Beesley, P.W., Mummery, R., and Tibaldi, J. (1995) J Neurochem 64, 2288–2294.PubMedCrossRefGoogle Scholar
  34. 34.
    Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P., and Grant, S.G. (2000) Nat Neurosci 3, 661–669.PubMedCrossRefGoogle Scholar
  35. 35.
    Phillips, G.R., Florens, L., Tanaka, H., Khaing, Z.Z., Fidler, L., Yates, J.R., 3rd, and Colman, D.R. (2005) J Neurosci Res 81, 762–775.PubMedCrossRefGoogle Scholar
  36. 36.
    Doherty, P., Skaper, S.D., Moore, S.E., Leon, A., and Walsh, F.S. (1992) Development 115, 885–892.PubMedGoogle Scholar
  37. 37.
    Inoue, A., and Sanes, J.R. (1997) Science 276, 1428–1431.PubMedCrossRefGoogle Scholar
  38. 38.
    Treubert-Zimmermann, U., Heyers, D., and Redies, C. (2002) J Neurosci 22, 7617–7626.PubMedGoogle Scholar
  39. 39.
    Poskanzer, K., Needleman, L.A., Bozdagi, O., and Huntley, G.W. (2003) J Neurosci 23, 2294–2305.PubMedGoogle Scholar
  40. 40.
    Ango, F., di Cristo, G., Higashiyama, H., Bennett, V., Wu, P., and Huang, Z.J. (2004) Cell 119, 257–272.PubMedCrossRefGoogle Scholar
  41. 41.
    Bozdagi, O., Valcin, M., Poskanzer, K., Tanaka, H., and Benson, D.L. (2004) Mol Cell Neurosci 27, 509–521.PubMedCrossRefGoogle Scholar
  42. 42.
    Yu, X., and Malenka, R.C. (2003) Nat Neurosci 6, 1169–1177.PubMedCrossRefGoogle Scholar
  43. 43.
    Shima, Y., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Chisaka, O., Takeichi, M., and Uemura, T. (2002) Dev Dyn 223, 321–332.PubMedCrossRefGoogle Scholar
  44. 44.
    Allison, D.W., Gelfand, V.I., Spector, I., and Craig, A.M. (1998) J Neurosci 18, 2423–2436.PubMedGoogle Scholar
  45. 45.
    Zhang, W., and Benson, D.L. (2001) J Neurosci 21, 5169–5181.PubMedGoogle Scholar
  46. 46.
    Scheiffele, P., Fan, J., Choih, J., Fetter, R., and Serafini, T. (2000) Cell 101, 657–669.PubMedCrossRefGoogle Scholar
  47. 47.
    Tang, L., Hung, C.P., and Schuman, E.M. (1998) Neuron 20, 1165–1175.PubMedCrossRefGoogle Scholar
  48. 48.
    Bozdagi, O., Shan, W., Tanaka, H., Benson, D.L., and Huntley, G.W. (2000) Neuron 28, 245–259.PubMedCrossRefGoogle Scholar
  49. 49.
    Honjo, Y., Nakagawa, S., and Takeichi, M. (2000) Genes Cells 5, 309–318.PubMedCrossRefGoogle Scholar
  50. 50.
    Coussen, F., Normand, E., Marchal, C., Costet, P., Choquet, D., Lambert, M., Mege, R.M., and Mulle, C. (2002) J Neurosci 22, 6426–6436.PubMedGoogle Scholar
  51. 51.
    Reuver, S.M., and Garner, C.C. (1998) J Cell Sci 111, 1071–1080.PubMedGoogle Scholar
  52. 52.
    Piccoli, G., Rutishauser, U., and Bruses, J.L. (2004) J Neurosci 24, 10918–10923.PubMedCrossRefGoogle Scholar
  53. 53.
    Manabe, T., Togashi, H., Uchida, N., Suzuki, S.C., Hayakawa, Y., Yamamoto, M., Yoda, H., Miyakawa, T., Takeichi, M., and Chisaka, O. (2000) Mol Cell Neurosci 15, 534–546.PubMedCrossRefGoogle Scholar
  54. 54.
    Okamura, K., Tanaka, H., Yagita, Y., Saeki, Y., Taguchi, A., Hiraoka, Y., Zeng, L.H., Colman, D.R., and Miki, N. (2004) J Cell Biol 167, 961–972.PubMedCrossRefGoogle Scholar
  55. 55.
    Huntley, G.W., and Benson, D.L. (1999) J Comp Neurol 407, 453–471.PubMedCrossRefGoogle Scholar
  56. 56.
    Brock, J.H., Elste, A., and Huntley, G.W. (2004) J Neurosci 24, 8806–8817.PubMedCrossRefGoogle Scholar
  57. 57.
    Li, B., Chen, N., Luo, T., Otsu, Y., Murphy, T.H., and Raymond, L.A. (2002) Nat Neurosci 5, 833–834.PubMedCrossRefGoogle Scholar
  58. 58.
    Morishita, W., Marie, H., and Malenka, R.C. (2005) Nat Neurosci 8, 1043–1050.PubMedCrossRefGoogle Scholar
  59. 59.
    Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H., and Matus, A. (2000) Nat Neurosci 3, 887–894.PubMedCrossRefGoogle Scholar
  60. 60.
    Abe, K., Chisaka, O., Van Roy, F., and Takeichi, M. (2004) Nat Neurosci 7, 357–363.PubMedCrossRefGoogle Scholar
  61. 61.
    Colledge, M., Dean, R.A., Scott, G.K., Langeberg, L.K., Huganir, R.L., and Scott, J.D. (2000) Neuron 27, 107–119.PubMedCrossRefGoogle Scholar
  62. 62.
    Dell’Acqua, M.L., Dodge, K.L., Tavalin, S.J., and Scott, J.D. (2002) J Biol Chem 277, 48796–48802.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhu, H., and Luo, L. (2004) Neuron 42, 63–75.PubMedCrossRefGoogle Scholar
  64. 64.
    Hummel, T., and Zipursky, S.L. (2004) Neuron 42, 77–88.PubMedCrossRefGoogle Scholar
  65. 65.
    Prakash, S., Caldwell, J.C., Eberl, D.F., and Clandinin, T.R. (2005) Nat Neurosci 8, 443–450.PubMedGoogle Scholar
  66. 66.
    Chih, B., Engelman, H., and Scheiffele, P. (2005) Science 307, 1324–1328.PubMedCrossRefGoogle Scholar
  67. 67.
    Biederer, T., Sara, Y., Mozhayeva, M., Atasoy, D., Liu, X., Kavalali, E.T., and Sudhof, T.C. (2002) Science 297, 1525–1531.PubMedCrossRefGoogle Scholar
  68. 68.
    Nollet, F., Kools, P., and van Roy, F. (2000) J Mol Biol 299, 551–572.PubMedCrossRefGoogle Scholar
  69. 69.
    Hirano, S., Suzuki, S.T., and Redies, C.M. (2003) Front Biosci 8, D306–355.PubMedGoogle Scholar
  70. 70.
    Kutlesa, S., Wessels, J.T., Speiser, A., Steiert, I., Muller, C.A., and Klein, G. (2002) J Cell Sci 115, 4505–4515.PubMedCrossRefGoogle Scholar
  71. 71.
    Whittard, J.D., Craig, S.E., Mould, A.P., Koch, A., Pertz, O., Engel, J., and Humphries, M.J. (2002) Matrix Biol 21, 525–532.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Tonya R. Anderson
    • 1
  • Deanna L. Benson
    • 1
  1. 1.Fishberg Department of NeuroscienceMount Sinai School of MedicineNew YorkUSA

Personalised recommendations