Assembly of Presynaptic Active Zones

  • Thomas Dresbach
  • Anna Fejtová
  • Eckart D. Gundelfinger

1. Summary

The active zone defines the area of the presynaptic plasma membrane where synaptic vesicles (SV) dock, mature, and fuse with the cell membrane in a regulated manner. The active zone is defined by an electron-dense cytomatrix of specialized proteins, the cytomatrix assembled at the active zone (CAZ). Some of these proteins, e.g., RIMs, Munc13s, ERC/CASTs as well as Bassoon and Piccolo are exclusive components of the CAZ, and are thought to mediate specific functions, including the localization and regulation of the SV cycle. Recently, major progress has been achieved in studying the assembly of the active zone and the underlying cytoskeletal matrix, suggesting it is not assembled ‘brick-by-brick’ as originally assumed. Rather, mounting evidence suggests that active zone components are preassembled within the neuronal soma, presumably at a trans-Golgi compartment, and then transported on distinct precursor vesicles to primordial presynaptic sites where they fuse with the cell membrane. As Piccolo and Bassoon are unique marker proteins of these vesicles they are called Piccolo-Bassoon transport vesicles (PTVs). The present review summarizes evidence for this active zone precursor vesicle hypothesis, which predicts that presynaptic active zones are assembled in a more or less quantal manner.


Active Zone Neurotransmitter Release Presynaptic Active Zone Active Zone Protein Precursor Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12. References

  1. 1.
    Garner, C.C., Kindler, S., and Gundelfinger, E.D. (2000) Curr Opin Neurobiol 10, 321–327.PubMedCrossRefGoogle Scholar
  2. 2.
    Murthy, V.N., and De Camilli, P. (2003) Annu Rev Neurosci 26, 701–728.PubMedCrossRefGoogle Scholar
  3. 3.
    Sudhof, T.C. (2004) Annu Rev Neurosci 27, 509–547.PubMedCrossRefGoogle Scholar
  4. 4.
    Sara, Y., Virmani, T., Deak, F., Liu, X., and Kavalali, E.T. (2005) Neuron 45, 563–573.PubMedCrossRefGoogle Scholar
  5. 5.
    Rizo, J., and Sudhof, T.C. (2002) Nat Rev Neurosci 3, 641–653.PubMedGoogle Scholar
  6. 6.
    An, S., and Zenisek, D. (2004) Curr Opin Neurobiol 14, 522–530.PubMedCrossRefGoogle Scholar
  7. 7.
    Dresbach, T., Qualmann, B., Kessels, M.M., Garner, C.C., and Gundelfinger, E.D. (2001) Cell Mol Life Sci 58, 94–116.PubMedCrossRefGoogle Scholar
  8. 8.
    Gundelfinger, E.D., Kessels, M.M., and Qualmann, B. (2003) Nat Rev Mol Cell Biol 4, 127–139.PubMedCrossRefGoogle Scholar
  9. 9.
    Landis, D.M., Hall, A.K., Weinstein, L.A., and Reese, T.S. (1988) Neuron 1, 201–209.PubMedCrossRefGoogle Scholar
  10. 10.
    Hirokawa, N., Sobue, K., Kanda, K., Harada, A., and Yorifuji, H. (1989) J Cell Biol 108, 111–126.PubMedCrossRefGoogle Scholar
  11. 11.
    Bloom, F.E., and Aghajanian, G.K. (1968) J Ultrastruct Res 22, 361–375.PubMedCrossRefGoogle Scholar
  12. 12.
    Pfenninger, K., Akert, K., Moor, H., and Sandri, C. (1972) J Neurocytol 1, 129–149.PubMedCrossRefGoogle Scholar
  13. 13.
    Sur, C., Triller, A., and Korn, H. (1995) J Comp Neurol 351, 247–260.PubMedCrossRefGoogle Scholar
  14. 14.
    Triller, A., and Korn, H. (1985) J Neurocytol 14, 177–192.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhai, R.G., and Bellen, H.J. (2004) Physiology (Bethesda) 19, 262–270.Google Scholar
  16. 16.
    Phillips, G.R., Huang, J.K., Wang, Y., Tanaka, H., Shapiro, L., Zhang, W., Shan, W.S., Arndt, K., Frank, M., Gordon, R.E., Gawinowicz, M.A., Zhao, Y., and Colman, D.R. (2001) Neuron 32, 63–77.PubMedCrossRefGoogle Scholar
  17. 17.
    Garcia, E.P., McPherson, P.S., Chilcote, T.J., Takei, K., and De Camilli, P. (1995) J Cell Biol 129, 105–120.PubMedCrossRefGoogle Scholar
  18. 18.
    Meinrenken, C.J., Borst, J.G., and Sakmann, B. (2002) J Neurosci 22, 1648–1667.PubMedGoogle Scholar
  19. 19.
    Meinrenken, C.J., Borst, J.G., and Sakmann, B. (2003) J Physiol 547, 665–689.PubMedGoogle Scholar
  20. 20.
    Garner, C.C., Zhai, R.G., Gundelfinger, E.D., and Ziv, N.E. (2002) Trends Neurosci 25, 243–251.PubMedCrossRefGoogle Scholar
  21. 21.
    Rosenmund, C., Rettig, J., and Brose, N. (2003) Curr Opin Neurobiol 13, 509–519.PubMedCrossRefGoogle Scholar
  22. 22.
    Varoqueaux, F., Sigler, A., Rhee, J.S., Brose, N., Enk, C., Reim, K., and Rosenmund, C. (2002) Proc Natl Acad Sci U S A 99, 9037–9042.PubMedCrossRefGoogle Scholar
  23. 23.
    Rhee, J.S., Betz, A., Pyott, S., Reim, K., Varoqueaux, F., Augustin, I., Hesse, D., Sudhof, T.C., Takahashi, M., Rosenmund, C., and Brose, N. (2002) Cell 108, 121–133.PubMedCrossRefGoogle Scholar
  24. 24.
    Junge, H.J., Rhee, J.S., Jahn, O., Varoqueaux, F., Spiess, J., Waxham, M.N., Rosenmund, C., and Brose, N. (2004) Cell 118, 389–401.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaeser, P.S., and Sudhof, T.C. (2005) Biochem Soc Trans 33, 1345–1349.PubMedCrossRefGoogle Scholar
  26. 26.
    Calakos, N., Schoch, S., Sudhof, T.C., and Malenka, R.C. (2004) Neuron 42, 889–896.PubMedCrossRefGoogle Scholar
  27. 27.
    Betz, A., Thakur, P., Junge, H.J., Ashery, U., Rhee, J.S., Scheuss, V., Rosenmund, C., Rettig, J., and Brose, N. (2001) Neuron 30, 183–196.PubMedCrossRefGoogle Scholar
  28. 28.
    Dulubova, I., Lou, X., Lu, J., Huryeva, I., Alam, A., Schneggenburger, R., Sudhof, T.C., and Rizo, J. (2005) EMBO J 24, 2839–2850.PubMedCrossRefGoogle Scholar
  29. 29.
    Schoch, S., Castillo, P.E., Jo, T., Mukherjee, K., Geppert, M., Wang, Y., Schmitz, F., Malenka, R.C., and Sudhof, T.C. (2002) Nature 415, 321–326.PubMedCrossRefGoogle Scholar
  30. 30.
    Serra-Pages, C., Medley, Q.G., Tang, M., Hart, A., and Streuli, M. (1998) J Biol Chem 273, 15611–15620.PubMedCrossRefGoogle Scholar
  31. 31.
    Ko, J., Na, M., Kim, S., Lee, J.R., and Kim, E. (2003) J Biol Chem 278, 42377–42385.PubMedCrossRefGoogle Scholar
  32. 32.
    Takao-Rikitsu, E., Mochida, S., Inoue, E., Deguchi-Tawarada, M., Inoue, M., Ohtsuka, T., and Takai, Y. (2004) J Cell Biol 164, 301–311.PubMedCrossRefGoogle Scholar
  33. 33.
    Altrock, W.D., Dieck, S.T., Sokolov, M., Meyer, A.C., Sigler, A., Brakebusch, C., Fassler, R., Richter, K., Boeckers, T.M., Potschka, H., Brandt, C., Loscher, W., Grimberg, D., Dresbach, T., Hempelmann, A., Hassan, H., Balschun, D., Frey, J.U., Brandstatter, J.H., Garner, C.C., Rosenmund, C., and Gundelfinger, E.D. (2003) Neuron 37, 787–800.PubMedCrossRefGoogle Scholar
  34. 34.
    Dick, O., Dieck, S.T., Altrock, W.D., Ammermuller, J., Weiler, R., Garner, C.C., Gundelfinger, E.D., and Brandstatter, J.H. (2003) Neuron 37, 775–786.PubMedCrossRefGoogle Scholar
  35. 35.
    Khimich, D., Nouvian, R., Pujol, R., Dieck, S.T., Egner, A., Gundelfinger, E.D., and Moser, T. (2005) Nature 434, 889–894.PubMedCrossRefGoogle Scholar
  36. 36.
    Dieck, S.T., Altrock, W.D., Kessels, M.M., Qualmann, B., Regus, H., Brauner, D., Fejtova, A., Bracko, O., Gundelfinger, E.D., and Brandstatter, J.H. (2005) J Cell Biol 168, 825–836.CrossRefGoogle Scholar
  37. 37.
    Zhen, M., and Jin, Y. (2004) Curr Opin Neurobiol 14, 280–287.PubMedCrossRefGoogle Scholar
  38. 38.
    Bresler, T., Shapira, M., Boeckers, T., Dresbach, T., Futter, M., Garner, C.C., Rosenblum, K., Gundelfinger, E.D., and Ziv, N.E. (2004) J Neurosci 24, 1507–1520.PubMedCrossRefGoogle Scholar
  39. 39.
    Ziv, N.E., and Garner, C.C. (2001) Curr Opin Neurobiol 11, 536–543.PubMedCrossRefGoogle Scholar
  40. 40.
    Friedman, H.V., Bresler, T., Garner, C.C., and Ziv, N.E. (2000) Neuron 27, 57–69.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhai, R.G., Vardinon-Friedman, H., Cases-Langhoff, C., Becker, B., Gundelfinger, E.D., Ziv, N.E., and Garner, C.C. (2001) Neuron 29, 131–143.PubMedCrossRefGoogle Scholar
  42. 42.
    Shapira, M., Zhai, R.G., Dresbach, T., Bresler, T., Torres, V.I., Gundelfinger, E.D., Ziv, N.E., and Garner, C.C. (2003) Neuron 38, 237–252.PubMedCrossRefGoogle Scholar
  43. 43.
    Vaughn, J.E. (1989) Synapse 3, 255–285.PubMedCrossRefGoogle Scholar
  44. 44.
    Bamji, S.X., Shimazu, K., Kimes, N., Huelsken, J., Birchmeier, W., Lu, B., and Reichardt, L.F. (2003) Neuron 40, 719–731.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhai, R., Olias, G., Chung, W.J., Lester, R.A., Dieck, S.T., Langnaese, K., Kreutz, M.R., Kindler, S., Gundelfinger, E.D., and Garner, C.C. (2000) Mol Cell Neurosci 15, 417–428.PubMedCrossRefGoogle Scholar
  46. 46.
    Dresbach, T., Hempelmann, A., Spilker, C., Dieck, S.T., Altrock, W.D., Zuschratter, W., Garner, C.C., and Gundelfinger, E.D. (2003) Mol Cell Neurosci 23, 279–291.PubMedCrossRefGoogle Scholar
  47. 47.
    Dresbach, T., Torres, V., Wittenmayer, N., Altrock, W.D., Zamorano, P., Zuschratter, W., Nawrotzki, R., Ziv, N.E., Garner, C.C., and Gundelfinger, E.D. (2006) J Biol Chem 281, 6038–6047.PubMedCrossRefGoogle Scholar
  48. 48.
    Ahmari, S.E., Buchanan, J., and Smith, S.J. (2000) Nat Neurosci 3, 445–451.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Thomas Dresbach
    • 1
  • Anna Fejtová
    • 2
  • Eckart D. Gundelfinger
    • 2
  1. 1.Institute for Anatomy and Cell BiologyUniversity of HeidelbergHeidelbergGermany
  2. 2.Leibniz Institute for NeurobiologyMagdeburgGermany

Personalised recommendations