Synaptogenesis: When Long-Distance Relations Become Intimate

  • Thomas C. Südhof

1. Summary

Neurons in brain talk to each other at synapses which connect neurons into vast communicating synaptic circuits. Synapses are specialized intercellular junctions that are diverse and dynamic. The number, locations, and distinct functional properties of synapses confer onto synaptic circuits an enormous complexity that is essential for information processing by these circuits. Insight into how synaptic connections in such circuits are specified represents a multifaceted problem that includes four interrelated questions: 1. How does a neuron identify the correct target neurons for synapse formation? 2. How does a neuron form a synapse on specific parts of that target neuron, e.g., distal dendrites or axon hillocks? 3. How is the decision reached, whether to keep or to discard a given synapse after it has been formed? 4. How is the functional diversity of synapses generated and controlled? Clearly synapse formation means more than just establishing contacts, and includes specification of the dynamics and types of these synaptic contacts. Although much remains to be clarified, the available data suggest that axonal pathfinding is a major component in establishing synaptic specificity, that initial formation of synapses is fueled by mechanisms that involve multiple cell adhesion molecules, and that the development of synaptic properties and use of a synapse are crucial in the decision about whether or not a synapse survives.


Cell Adhesion Molecule Perforant Path Distal Dendrite Axonal Pathfinding Axon Hillock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. 1.
    Somogyi, P., and Klausberger, T. (2005) J Physiol 562, 9–26.PubMedCrossRefGoogle Scholar
  2. 2.
    Rozov, A., Burnashev, N., Sakmann, B., and Neher, E. (2001) J Physiol 531, 807–826.PubMedCrossRefGoogle Scholar
  3. 3.
    Koester, H.J., and Johnston, D. (2005) Science 308, 863–866.PubMedCrossRefGoogle Scholar
  4. 4.
    Hua, J.Y., and Smith, S.J. (2004) Nat Neurosci 7, 327–332.PubMedCrossRefGoogle Scholar
  5. 5.
    Peters, A., Palay, S.L., and Webster, H.deF. (1991) The Fine Structure of the Nervous System. Neurons and Their Supporting Cells. 3rd ed., Oxford University Press, New York.Google Scholar
  6. 6.
    Satzler, K., Sohl, L.F., Bollmann, J.H., Borst, J.G., Frotscher, M., Sakmann, B., and Lubke, J.H. (2002) J Neurosci 22, 10567–10579.PubMedGoogle Scholar
  7. 7.
    Xu-Friedman, M.A., Harris, K.M., and Regehr, W.G. (2001) J Neurosci 21, 6666–6672.PubMedGoogle Scholar
  8. 8.
    Harlow, M.L., Ress, D., Stoschek, A., Marshall, R.M., and McMahan, U.J. (2001) Nature 409, 479–484.PubMedCrossRefGoogle Scholar
  9. 9.
    Sterling, P., and Matthews, G. (2005) Trends Neurosci 28, 20–29.PubMedCrossRefGoogle Scholar
  10. 10.
    Sperry, R.W. (1963) Proc Natl Acad Sci U S A 50, 703–710.PubMedCrossRefGoogle Scholar
  11. 11.
    Skutella, T., and Nitsch, R. (2001) Trends Neurosci 24, 107–113.PubMedCrossRefGoogle Scholar
  12. 12.
    Tessier-Lavigne, M. (2002–2003) Harvey Lect 98, 103–143.PubMedGoogle Scholar
  13. 13.
    Charron, F., and Tessier-Lavigne, M. (2005) Development 132, 2251–2262.PubMedCrossRefGoogle Scholar
  14. 14.
    Lubke, J., Markram, H., Frotscher, M., and Sakmann, B. (1996) J Neurosci 16, 3209–3218.PubMedGoogle Scholar
  15. 15.
    Verhage, M., Maia, A.S., Plomp, J.J., Brussaard, A.B., Heeroma, J.H., Vermeer, H., Toonen, R.F., Hammer, R.E., van den Berg, T.K., Missler, M., Geuze, H., and Südhof, T.C. (2000) Science 287, 864–869.PubMedCrossRefGoogle Scholar
  16. 16.
    Scheiffele, P., Fan, J., Choih, J., Fetter, R., and Serafini, T. (2000) Cell 101, 657–669.PubMedCrossRefGoogle Scholar
  17. 17.
    Chubykin, A.A., Liu, X., Comoletti, D., Tsigelny, I., Taylor, P., and Südhof, T.C. (2005) J Biol Chem 280, 22365–22374.PubMedCrossRefGoogle Scholar
  18. 18.
    Biederer, T., Sara, Y., Mozhayeva, M., Atasoy, D., Liu, X., Kavalali, E.T., and Südhof, T.C. (2002) Science 297, 1525–1531.PubMedCrossRefGoogle Scholar
  19. 19.
    Sara, Y., Biederer, T., Atasoy, D., Mozhayeva, M.G., Chubykin, A., Südhof, T.C., and Kavalali, E.T. (2005) J Neurosci 25, 260–270. 20. Chubykin et al. submitted.PubMedCrossRefGoogle Scholar
  20. 21.
    Weiner, J.A., Wang, X., Tapia, J.C., and Sanes, J.R. (2005) Proc Natl Acad Sci U S A 102, 8–14.PubMedCrossRefGoogle Scholar
  21. 22.
    Missler, M., Zhang, W., Rohlmann, A., Kattenstroth, G., Hammer, R.E., Gottmann, K., and Sudhof, T.C. (2003) Nature 423, 939–948.PubMedCrossRefGoogle Scholar
  22. 23.
    Boucard, A., Chubykin, A.A., Comoletti, D., Taylor, P., and Südhof, T.C. (2005) Neuron 20, 229–236.CrossRefGoogle Scholar
  23. 24.
    Penzes, P., Beeser, A., Chernoff, J., Schiller, M.R., Eipper, B.A., Mains, R.E., and Huganir, R.L. (2003) Neuron 37, 263–274.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Thomas C. Südhof
    • 1
  1. 1.Department of Molecular Genetics, Center for Basic Neuroscience, and Howard Hughes Medical InstituteUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations