Skip to main content

Designer Self-Assembling Peptide Nanofiber Scaffolds

  • Chapter
  • First Online:
Nanotechnology for Biology and Medicine

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

Abstract

Biomedical researchers have become increasingly aware of the limitations of the conventional two-dimensional (2-D) tissue cell cultures where most tissue cell studies have been carried out. They are now searching and testing three-dimensional (3-D) cell culture systems, something between a Petri dish and an animal, such as a mouse. The important implications of 3-D tissue cell cultures for basic cell biology, high-content drug screening, and regenerative medicine and beyond are far-reaching. How can nanobiotechnology truly advance traditional cell biology and emerging regenerative medicine? Why nanometer scale is important in biomedical research and medical science? Of course, a nanometer is 1,000 times smaller than a micrometer, but why it matters in biology? This chapter addresses these questions. It has become more and more apparent that 3-D cell culture offers a more realistic local environment through the nanofiber scaffolds where the functional properties of cells can be observed and manipulated. A new class of designer self-assembling peptide nanofiber scaffolds now provides an ideally alternative system not only for 3-D tissue culture but also for regenerative medicine and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atala A, Lanza R (2002) Methods of Tissue Engineering Academic Press.

    Google Scholar 

  • Ayad S B-HR, Humphries M, Kadler K, Shuttleworth A (1998) The Extracellular Matrix Factsbook. 2nd Ed Academic Press.

    Google Scholar 

  • Bissell MJ (1981) The differentiated state of normal and malignant cells or how to define a “normal” cell in culture. Int Rev Cytol 70:27–100.

    Article  PubMed  CAS  Google Scholar 

  • Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70:537–546.

    Article  PubMed  Google Scholar 

  • Bokhari MA, Akay G, Zhang S, Birch MA (2005) The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel-polyHIPE polymer hybrid material. Biomaterials 26:5198–5208.

    Article  PubMed  CAS  Google Scholar 

  • Caplan M, Schwartzfarb E, Zhang S, Kamm R, Lauffenburger D (2002) Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence. Biomaterials 23:219–227.

    Article  PubMed  CAS  Google Scholar 

  • Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–639.

    Article  PubMed  CAS  Google Scholar 

  • Cukierman E, Pankov R, Stevens D, Yamada K (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712.

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111:442–450.

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Hsieh PC, Takahashi T, Song Q, Zhang S, Kamm RD, Grodzinsky AJ, Anversa P, Lee RT (2006) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A 103:8155–8160.

    Article  PubMed  CAS  Google Scholar 

  • Edelman DB, Keefer EW (2005) A cultural renaissance: in vitro cell biology embraces three-dimensional context. Exp Neurol 192:1–6.

    Article  PubMed  Google Scholar 

  • Ellis-Behnke RG, So K-F, Zhang S (2006) Molecular repair of the brain using self-assembling peptides. Chemistry Today 24:42–45.

    Article  PubMed  CAS  Google Scholar 

  • Ellis-Behnke RG, Liang YX, Tay DKC, Kau PWF, Schneider GE, Zhang S, Wu W, So K.-F (2006) Nano hemostat solution: immediate hemostasis at the nanoscale. Nanomedicine. Nanotechnology, Biology & Medicine 2:207–215.

    Article  PubMed  CAS  Google Scholar 

  • Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF, Schneider GE (2006a) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci U S A 103:5054–5059.

    Article  PubMed  CAS  Google Scholar 

  • Ellis-Behnke RG, Liang YX, Tay DK, Kau PW, Schneider GE, Zhang S, Wu W, So KF (2006b) Nano hemostat solution: immediate hemostasis at the nanoscale. Nanomedicine 2:207–215.

    Article  PubMed  CAS  Google Scholar 

  • Felsenfeld G, Davies DR, Rich A (1957) Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 79:2023–2024.

    Article  PubMed  CAS  Google Scholar 

  • Gelain F, Horii A, Zhang S (2007a) Designer self-assembling peptide scaffolds for 3-d tissue cell cultures and regenerative medicine. Macromol Biosci 7:544–551.

    Article  PubMed  CAS  Google Scholar 

  • Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1:e119.

    Article  PubMed  Google Scholar 

  • Gelain F, Lomander A, Vescovi AL, Zhang S (2007b) Systematic studies of a self-assembling peptide nanofiber scaffold with other scaffolds. J Nanosci Nanotechnol 7:424–434.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12.

    Article  PubMed  CAS  Google Scholar 

  • Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S (2000) Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA 97:6728–6733.

    Article  PubMed  CAS  Google Scholar 

  • Horii A, Wang X, Gelain F, Zhang S (2007) Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2:e190.

    Article  PubMed  Google Scholar 

  • Kiley P, Zhao X, Vaughn M, Baldo M, Bruce BD, Zhang S (2005) Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. PLoS Biol 3:1181–1186.

    Article  PubMed  CAS  Google Scholar 

  • Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99:9996–10001.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, et al. (1986) Basement membrane complexes with biological activity. Biochemistry 25:312–318.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386.

    Article  PubMed  CAS  Google Scholar 

  • Kreis T, Vale R (1999) Guide book to the extracellular matrix, anchor, and adhesion proteins. 2nd ed. Oxford, UK: Oxford University Press.

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary–like structures. J Cell Biol 107:1589–1598.

    Article  PubMed  CAS  Google Scholar 

  • Lanza R, Langer R, VacantiJ (2000) Principles of Tissue Engineering 2nd edition. Academic Press: San Diego, CA.

    Google Scholar 

  • Lee EY, Lee WH, Kaetzel CS, Parry G, Bissell MJ (1985) Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion. Proc Natl Acad Sci U S A 82:1419–1423.

    Article  PubMed  CAS  Google Scholar 

  • Marini DM, Hwang W, Lauffenburger DA, Zhang S, Kamm RD (2002) Left-Handed Helical Ribbon Intermediates in the Self-Assembly of a β-Sheet Peptide. Nano Letters 2:295–299.

    Article  CAS  Google Scholar 

  • Nagai A, Nagai Y, Qu H, Zhang S (2007) Self-assembling behaviors of lipid-like peptides A6D and A6K. J. Nanoscience & Nanotechnology 7:2246–2252.

    Article  CAS  Google Scholar 

  • Narmoneva DA, Oni O, Sieminski AL, Zhang S, Gertler JP, Kamm RD, Lee RT (2005) Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 26:4837–4846.

    Article  PubMed  CAS  Google Scholar 

  • Oliver C, Waters JF, Tolbert CL, Kleinman HK (1987) Culture of parotid acinar cells on a reconstituted basement membrane substratum. J Dent Res 66:594–595.

    Article  PubMed  CAS  Google Scholar 

  • Palsson B, Hubell J, Plonsey R, Bronzino JD (2003) Tissue engineering: Principles and applications in engineering. CRC Press: Boca Raton, FL

    Google Scholar 

  • Pauling L (1960) The Nature of the Chemical Bond Third Edition. Cornell University Press: Ithaca, NY

    Google Scholar 

  • Ratner B, Hoffman A, Schoen F, Lemons J (1996) Biomaterials Science. Academic Press: New York

    Google Scholar 

  • Rich A, Davies D (1956) A new two-stranded helical structure: polyadenylic acid and polyuridylic acid. J Amer Chem Soc 78:3548.

    Article  CAS  Google Scholar 

  • Santoso S, Hwang W, Hartman H, Zhang S (2002) Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Letters 2:687–691.

    Article  CAS  Google Scholar 

  • Schmeichel KL, Bissell MJ (2003) Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 116:2377–2388.

    Article  PubMed  CAS  Google Scholar 

  • Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR (1979) Laminin--a glycoprotein from basement membranes. J Biol Chem 254:9933–9937.

    PubMed  CAS  Google Scholar 

  • Vauthey S, Santoso S, Gong H, Watson N, Zhang S (2002) Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci USA 99:5355–5360.

    PubMed  CAS  Google Scholar 

  • von Maltzahn G, Vauthey S, Santoso S, Zhang S (2003) Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir 19:4332–4337.

    Article  PubMed  CAS  Google Scholar 

  • Weaver VM, Howlett AR, Langton-Webster B, Petersen OW, Bissell MJ (1995) The development of a functionally relevant cell culture model of progressive human breast cancer. Semin Cancer Biol 6:175–184.

    Article  PubMed  CAS  Google Scholar 

  • Yannas IV (2001) Tissue and organ regeneration in adults.

    Google Scholar 

  • Yang S, Zhang S (2006) Self-assembling behavior of designer lipid-like peptides. Supramolecular Chemistry 18:389–396.

    Google Scholar 

  • Yaghmur A, Laggner P, Zhang S, Rappolt M (2007) Tuning curvature and stability of monoolein bilayers by designer lipid-like peptide surfactants. PLoS ONE 2:e479.

    Google Scholar 

  • Yeh JI, Du S, Tordajada A, Paulo J, Zhang S (2005) Peptergent: peptide detergents that improve stability and functionality of a membrane protein glycerol-3-phosphate dehydrogenase. Biochemistry 44:16912–16919.

    Article  PubMed  CAS  Google Scholar 

  • Yokoi H, Kinoshita T, Zhang S (2005) Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A 102:8414–8419.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S (2002) Emerging biological materials through molecular self-assembly Biotechnology Advances 20:321–339.

    Google Scholar 

  • Zhang S, Altman M (1999) Peptide self-assembly in functional polymer science and engineering. Reactive & Functional Polymers 41:91–102.

    Article  CAS  Google Scholar 

  • Zhang S, Lockshin C, Herbert A, Winter E, Rich A (1992) Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J 11:3787–3796.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90:3334–3338.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Lockshin C, Cook R, Rich A (1994) Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34:663–672.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16:1385–1393.

    Article  PubMed  Google Scholar 

  • Zhang S, Zhao X, Spirio L (2005) PuraMatrix: Self-assembling peptide nanofiber scaffolds. In Scaffolding in Tissue Engineering. (Ed. Ma & Elisseeff) CRC Press, Boca Raton, FL pp.217–238.

    Article  PubMed  Google Scholar 

  • Zhao X, Zhang S (2006) Self-assembling nanopeptides become a new type of biomaterial. Adv Polym Sci 203:145–170.

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Nagai Y, Revees P, Kiley P, Khorana HG, Zhang S (2006) Designer lipid-like peptides significantly stabilize G-protein coupled receptor bovine rhodopsin. Proc Natl Acad Sci USA 103:17707–17712.

    Article  PubMed  CAS  Google Scholar 

  • Zhau HE, Goodwin TJ, Chang SM, Baker TL, Chung LW (1997) Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: evaluation of androgen-induced growth and PSA expression. In Vitro Cell Dev Biol Anim 33:375–380.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the supports by grants from Olympus Corp., Japan; Menicon, Ltd, Japan and fellowship to FG from Fondazione Centro San Raffaele del Monte Tabor, Milan, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhang, S., Yokoi, H., Gelain, F., Horii, A. (2012). Designer Self-Assembling Peptide Nanofiber Scaffolds. In: Silva, G., Parpura, V. (eds) Nanotechnology for Biology and Medicine. Fundamental Biomedical Technologies. Springer, New York, NY. https://doi.org/10.1007/978-0-387-31296-5_6

Download citation

Publish with us

Policies and ethics