Skip to main content

Micro and Nano Engineered Extracellular Matrices

  • Chapter
  • First Online:
Nanotechnology for Biology and Medicine

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 1689 Accesses

Abstract

Cells in our body are in intimate contact with the extracellular matrix (ECM), the substratum in which cells live. The ECM is composed of proteins, glycoproteins and proteoglycans that are arranged in tissue-specific structures. Cells form adhesions to the ECM via integrins, transmembrane proteins that interact with specific amino acid sequences found within the proteins that make up the ECM (for example, the arginine-glycine-aspartic acid, RGD, sequence). These adhesions are one way the cell interacts with its environment. The cell can influence the physical arrangement of the ECM through these adhesions and the cell itself can be influenced through the adhesions. When cells migrate, they extend psuedopods (filipodia) from the main body of the cell. Gustafson and Wolpert have made striking observations of psuedopods on the order of 500 nm extending from the body of a cell (sea urchin mesenchymal cells) to explore and probe the surrounding environment (Gustafson and Wolpert 1999). This exploration by the cells appears to happen randomly with psuedopods sweeping the surface until a point of stable contact is made. Cell movement then occurs in the direction of the contact through retraction of the attached psuedopod. This apparent exploration by cells of their surroundings has led researchers to develop scaffolds that provide cues to the cells as they migrate across its surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams GA, Bentley E, Nealey PF, Murphy CJ (2002) Electron microscopy of the canine corneal basement membranes. Cells Tissues Organs 170:251–257.

    Article  PubMed  CAS  Google Scholar 

  • Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ (2000a) Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res 299:39–46.

    Article  PubMed  CAS  Google Scholar 

  • Abrams GA, Schaus SS, Goodman SL, Nealey PF, Murphy CJ (2000b) Nanoscale topography of the corneal epithelial basement membrane and Descemet’s membrane of the human. Cornea 19:57–64.

    Article  PubMed  CAS  Google Scholar 

  • Abrams GA, Murphy CJ, Wang ZY, Nealey PF, Bjorling DE (2003) Ultrastructural basement membrane topography of the bladder epithelium. Urol Res 31:341–346.

    Article  PubMed  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, James DW (1994) Cell junctions, cell adhesions, and the extracellular matrix. In: Molecular Biology of the Cell, pp 950–1006. New York: Garland Publishing.

    Google Scholar 

  • Alhadlaq A, Mao JJ (2004) Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13:436–448.

    Article  PubMed  CAS  Google Scholar 

  • Bissell MJ, Rizki A, Mian IS (2003) Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol 15:753–762.

    Article  PubMed  CAS  Google Scholar 

  • Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70:537–546.

    Article  PubMed  Google Scholar 

  • Boateng SY, Hartman TJ, Ahluwalia N, Vidula H, Desai TA, Russell B (2003) Inhibition of fibroblast proliferation in cardiac myocyte cultures by surface microtopography. Am J Physiol Cell Physiol 285:C171–182.

    PubMed  CAS  Google Scholar 

  • Burczak K, Fujisato T, Hatada M, Ikada Y (1994) Protein permeation through poly(vinyl alcohol) hydrogel membranes. Biomaterials 15:231–238.

    Article  PubMed  CAS  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712.

    Article  PubMed  CAS  Google Scholar 

  • Curtis AS, Casey B, Gallagher JO, Pasqui D, Wood MA, Wilkinson CD (2001) Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important? Biophys Chem 94:275–283.

    Article  PubMed  CAS  Google Scholar 

  • Degenaar P, Pioufle BL, Griscom L, Tixier A, Akagi Y, Morita Y, Murakami Y, Yokoyama K, Fujita H, Tamiya E (2001) A method for micrometer resolution patterning of primary culture neurons for SPM analysis. J Biochem (Tokyo) 130:367–376.

    CAS  Google Scholar 

  • den Braber ET, de Ruijter JE, Ginsel LA, von Recum AF, Jansen JA (1998) Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces. J Biomed Mater Res 40:291–300.

    Article  Google Scholar 

  • Desai TA, West T, Cohen M, Boiarski T, Rampersaud A (2004) Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev 56:1661–1673.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch J, Motlagh D, Russell B, Desai TA (2000) Fabrication of microtextured membranes for cardiac myocyte attachment and orientation. J Biomed Mater Res 53:267–275.

    Article  PubMed  CAS  Google Scholar 

  • Dunn GA, Heath JP (1976) A new hypothesis of contact guidance in tissue cells. Exp Cell Res 101:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Fan YW, Cui FZ, Hou SP, Xu QY, Chen LN, Lee IS (2002) Culture of neural cells on silicon wafers with nano-scale surface topograph. J Neurosci Methods 120:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Fawcett DW (1986) Blood lymph vascular systems. In: Textbook of Histology, pp 367–400. Philadelphia: W.B. Saunders.

    Google Scholar 

  • Gong D, Yadavalli V, Paulose M, Pishko M, Grimes C (2003) Controlled molecular release using nanoporous alumina capsules. Biomedical Microdevices 5:75–80.

    Article  CAS  Google Scholar 

  • Goodman SL, Sims PA, Albrecht RM (1996) Three-dimensional extracellular matrix textured biomaterials. Biomaterials 17:2087–2095.

    Article  PubMed  CAS  Google Scholar 

  • Gudjonsson T, Ronnov-Jessen L, Villadsen R, Bissell MJ, Petersen OW (2003) To create the correct microenvironment: three-dimensional heterotypic collagen assays for human breast epithelial morphogenesis and neoplasia. Methods 30:247–255.

    Article  PubMed  CAS  Google Scholar 

  • Gustafson T, Wolpert L (1999) Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae. Exp Cell Res 253:288–295.

    Article  PubMed  CAS  Google Scholar 

  • Hanarp P, Sutherland D, Gold J, Kasemo B (1999) Nanostructured model biomaterial surfaces prepared by colloidal lithography. Nanostructured Materials 12:429.

    Article  Google Scholar 

  • Hwang NS, Kim MS, Sampattavanich S, Baek JH, Zhang Z, Elisseeff J (2005) The Effects of Three Dimensional Culture and Growth Factors on the Chondrogenic Differentiation of Murine Embryonic Stem Cells. Stem Cells:113–123.

    Google Scholar 

  • Koike N FD, Gralla O, Au P, Schechner JS, and Rakesh K Jain. (2004) Creation of long lasting blood vessels. Nature 428:138–139.

    Google Scholar 

  • Kubosawa H, Kondo Y (1994) Quick-freeze, deep-etch studies of renal basement membranes. Microsc Res Tech 28:2–12.

    Article  PubMed  CAS  Google Scholar 

  • La Flamme KE, Mor G, Gong D, La Tempa T, Fusaro VA, Grimes CA, Desai TA (2005) Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility. Diabetes Technol Ther 7:684–694.

    Article  PubMed  Google Scholar 

  • Leoni L, Desai TA (2001) Nanoporous biocapsules for the encapsulation of insulinoma cells: biotransport and biocompatibility considerations. IEEE Trans Biomed Eng 48:1335–1341.

    Article  PubMed  CAS  Google Scholar 

  • Leoni L, Desai TA (2004) Micromachined biocapsules for cell-based sensing and delivery. Adv Drug Deliv Rev 56:211–229.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaka K, Walboomers XF, Yoshinari M, Inoue T, Jansen JA (2003) The attachment and growth behavior of osteoblast-like cells on microtextured surfaces. Biomaterials 24:2711–2719.

    Article  PubMed  CAS  Google Scholar 

  • Motlagh D, Hartman TJ, Desai TA, Russell B (2003a) Microfabricated grooves recapitulate neonatal myocyte connexin43 and N-cadherin expression and localization. J Biomed Mater Res A 67:148–157.

    Article  PubMed  Google Scholar 

  • Motlagh D, Senyo SE, Desai TA, Russell B (2003b) Microtextured substrata alter gene expression, protein localization and the shape of cardiac myocytes. Biomaterials 24:2463–2476.

    Article  PubMed  CAS  Google Scholar 

  • Norman JJ, Desai TA (2005) Control of cellular organization in three dimensions using a microfabricated polydimethylsiloxane-collagen composite tissue scaffold. Tissue Eng 11:378–386.

    Article  PubMed  Google Scholar 

  • Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V (2003) Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J Control Release 92:173–187.

    Article  PubMed  CAS  Google Scholar 

  • Pattison MA, Wurster S, Webster TJ, Haberstroh KM (2005) Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 26:2491–2500.

    Article  PubMed  CAS  Google Scholar 

  • Pedrotty DM, Koh J, Davis BH, Taylor DA, Wolf P, Niklason LE (2005) Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am J Physiol Heart Circ Physiol 288:H1620–1626.

    Article  PubMed  CAS  Google Scholar 

  • Popat KC, Leary Swan EE, Mukhatyar V, Chatvanichkul KI, Mor GK, Grimes CA, Desai TA (2005) Influence of nanoporous alumina membranes on long-term osteoblast response. Biomaterials 26:4516–4522.

    Article  PubMed  CAS  Google Scholar 

  • Powell K (2005) Stem-cell niches: it’s the ecology, stupid! Nature 435:268–270.

    Article  PubMed  CAS  Google Scholar 

  • Rahul Singhvi GSDICW (1994) Effects of substratum morphology on cell physiology. Biotechnology and Bioengineering 43:764–771.

    Article  Google Scholar 

  • Rhodin J (1980) Handbook of Physiology. Baltimore: Waverly Press, Inc.

    Google Scholar 

  • Sarkar S, Lee GY, Wong JY, Desai TA (2006) Development and Characterization of a Porous Micro-Patterned Scaffold for Vascular Tissue Engineering Applications. Biomaterials 4775–4782.

    Google Scholar 

  • Sarkar S, Dadhania M, Rourke P, Desai TA, Wong JY (2005) Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix. Acta Biomaterialia 1:93.

    Article  PubMed  Google Scholar 

  • Shirato I, Tomino Y, Koide H, Sakai T (1991) Fine structure of the glomerular basement membrane of the rat kidney visualized by high-resolution scanning electron microscopy. Cell Tissue Res 266:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Sommer JR (1995) Comparative anatomy: in praise of a powerful approach to elucidate mechanisms translating cardiac excitation into purposeful contraction. J Mol Cell Cardiol 1:19–35.

    Article  Google Scholar 

  • Swan EE, Popat KC, Desai TA (2005a) Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. Biomaterials 26:1969–1976.

    Article  PubMed  Google Scholar 

  • Swan EE, Popat KC, Grimes CA, Desai TA (2005b) Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J Biomed Mater Res A 72:288–295.

    PubMed  Google Scholar 

  • Thapa A, Miller DC, Webster TJ, Haberstroh KM (2003) Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 24:2915–2926.

    Article  PubMed  CAS  Google Scholar 

  • van Kooten TG, Whitesides JF, von Recum A (1998) Influence of silicone (PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis. J Biomed Mater Res 43:1–14.

    Article  PubMed  Google Scholar 

  • Yamasaki Y, Makino H, Hironaka K, Hayashi Y, Shikata K, Ota Z (1990) Three-dimensional architecture of rat glomerular basement membrane by ultra-high resolution scanning electron microscopy. Acta Med Okayama 44:333–335.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejal A. Desai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Norman, J.J., Desai, T.A. (2012). Micro and Nano Engineered Extracellular Matrices. In: Silva, G., Parpura, V. (eds) Nanotechnology for Biology and Medicine. Fundamental Biomedical Technologies. Springer, New York, NY. https://doi.org/10.1007/978-0-387-31296-5_5

Download citation

Publish with us

Policies and ethics