Skip to main content

Analytical Mechanics of Solids

  • Reference work entry
Springer Handbook of Experimental Solid Mechanics

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter we consider certain useful fundamental topics from the vast panorama of the analytical mechanics of solids, which, by itself, has been the subject of several handbooks. The specific topics that are briefly summarized include: elementary theories of material response such as elasticity, dynamic elasticity, viscoelasticity, plasticity, viscoplasticity, and creep; and some useful analytical results for boundary value problems in elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Truesdell (Ed.): Mechanics of Solids. In: Encyclopedia of Physics, Vol. VIa/2 (Springer, Berlin, Heidelberg 1972)

    Google Scholar 

  2. C. Truesdell, W. Noll: The Nonlinear Field Theories of Mechanics. In: Encyclopedia of Physics, Vol. III/3, ed. by S. Flügge (Springer, Berlin, Heidelberg 1965)

    Google Scholar 

  3. S.N. Atluri: Alternate stress and conjugate strain measures, and mixed foundations involving rigid rotations for computational analysis of finitely deformed solids, with application to plates and shells. I- Theory, Comput. Struct. 18(1), 93–116 (1986)

    Article  MathSciNet  Google Scholar 

  4. S.N. Atluri: On some new general and complementary energy theorems for rate problems in finite strain, classical elastoplasticty, J. Struct. Mech. 8(1), 61–92 (1980)

    MathSciNet  Google Scholar 

  5. A.C. Eringen: Nonlinear Theory of Continuous Media (McGraw-Hill, New York 1962)

    Google Scholar 

  6. R.W. Ogden: Nonlinear Elastic Deformation (Dover, New York 2001)

    Google Scholar 

  7. Y.C. Fung, P. Tong: Classical and Computational Solid Mechanics (World Scientific, Singapore 2001)

    MATH  Google Scholar 

  8. M. Mooney: A theory of large elastic deformation, J. Appl. Phys. 11, 582–592 (1940)

    Article  Google Scholar 

  9. A. Abel, R.H. Ham: The cyclic strain behavior of crystal aluminum-4 % copper, the Bauschinger effect, Acta Metallur. 14, 1489–1494 (1966)

    Article  Google Scholar 

  10. A. Abel, H. Muir: The Bauschinger effect and stacking fault energy, Phil. Mag. 27, 585–594 (1972)

    Article  Google Scholar 

  11. G.I. Taylor, H. Quinney: The plastic deformation of metals, Phil. Trans. A 230, 323–362 (1931)

    Google Scholar 

  12. R. Hill: The Mathematical Theory of Plasticity (Oxford Univ. Press, New York 1950)

    MATH  Google Scholar 

  13. W. Prager: A new method of analyzing stress and strains in work-hardening plastic solids, J. Appl. Mech. 23, 493–496 (1956)

    MATH  MathSciNet  Google Scholar 

  14. H. Ziegler: A modification of Pragerʼs hardening rule, Q. Appl. Math. 17, 55–65 (1959)

    MATH  MathSciNet  Google Scholar 

  15. D.C. Drucker: A more fundamental approach to plane stress-strain relations, Proc. 1st U.S. Nat. Congr. Appl. Mech. (1951) pp. 487–491

    Google Scholar 

  16. S. Nemat-Nasser: Continuum bases for consistent numerical foundations of finite strains in elastic and inelastic structures. In: Finite Element Analysis of Transient Nonlinear Structural Behavior, AMD, Vol. 14, ed. by T. Belytschko, J.R. Osias, P.V. Marcal (ASME, New York 1975) pp. 85–98

    Google Scholar 

  17. S.N. Atluri: On constitutive relations in finite strain hypoelasticity and elastoplasticity with isotropic or kinematic hardening, Comput. Meth. Appl. Mech. Eng. 43, 137–171 (1984)

    Article  MATH  Google Scholar 

  18. Y. Yamada, N. Yoshimura, T. Sakurai: Plastic stress-strain matrix and its application to the solution of elastic-plastic problems by the finite element method, Int. J. Mech. Sci. 10, 343–354 (1968)

    Article  MATH  Google Scholar 

  19. K. Valanis: Fundamental consequences of a new intrinsic tune measure plasticity as a limit of the endochronic theory, Arch. Mech. 32(2), 171–191 (1980)

    MATH  MathSciNet  Google Scholar 

  20. Z. Mroz: An attempt to describe the behavior of metals under cyclic loads using a more general workhardening model, Acta Mech. 7, 199–212 (1969)

    Article  MathSciNet  Google Scholar 

  21. O. Watanabe, S.N. Atluri: Constitutive modeling of cyclic plasticity and creep using an internal time concept, Int. J. Plast. 2(2), 107–134 (1986)

    Article  MATH  Google Scholar 

  22. E.C. Bingham: Fluidity and Plasticity (McGraw-Hill, New York 1922)

    Google Scholar 

  23. K. Hohenemser, W. Prager: Über die Ansätze der Mechanik isotroper Kontinua, Z. Angew. Math. Mech. 12, 216–226 (1932)

    Article  Google Scholar 

  24. I. Finnie, W.R. Heller: Creep of Engineering Materials (McGraw-Hill, New York 1959)

    Google Scholar 

  25. P. Perzyna: The constitutive equations for rate sensitive plastic materials, Quart. Appl. Mech. XX(4), 321–332 (1963)

    MathSciNet  Google Scholar 

  26. O.C. Zienkiewicz, C. Corneau: Visco-plasticity, plasticity and creep in elastic solids – a unified numerical solution approach, Int. J. Numer. Meth. Eng. 8, 821–845 (1974)

    Article  MATH  Google Scholar 

  27. J.H. Argyris, M. Keibler: Incremental formulation in nonlinear mechanics and large strain elasto-plasticity – natural approach – Part I, Comput. Methods Appl. Mech. Eng. 11, 215–247 (1977)

    Article  MATH  Google Scholar 

  28. G.N. Savin: Stress Concentration Around Holes (Pergamon, Elmsford, 1961)

    Google Scholar 

  29. A.S. Argon: Constitutive Equations in Plasticity (MIT Press, Cambridge, 1975)

    Google Scholar 

  30. A.L. Anand: Constitutive equations for rate independent, isotropicelastic-plastic solid exhibitive pressure sensitive yielding and plastic dilatancy, J. Appl. Mech. 47, 439–441 (1980)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert S. Kobayashi Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Kobayashi, A.S., Atluri, S.N. (2008). Analytical Mechanics of Solids. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_1

Download citation

Publish with us

Policies and ethics