Skip to main content

Time and Space-Resolved Spectroscopy

Spatial, temporal and spectral resolution in laser-materials processing and spectroscopic analysis

  • Chapter
Book cover Laser Ablation and its Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 129))

  • 3091 Accesses

6. Conclusions

Because ultrafast lasers have pulse durations shorter than most characteristic relaxation times of condensed phases, it has become more important than ever to characterize their temporal, spatial, and spectral content in detail. Of increasing importance are the broad spectral bandwidth, the enhanced probability of multiphoton electronic excitations, and the possibility of creating extremely high spatio-temporal densities of electronic (or, in the case of picosecond infrared free-electron lasers, vibrational) excitation. Narrow-band tunable laser sources continue to have an important place here, because they permit state-selective excitations. Because ultrafast lasers can be used both to control the direction of laser-induced materials modification and to follow the temporal and spatial evolution of those modifications, the kinds of techniques described here are likely to be much more frequently used in the future. The most advanced techniques for doing this include:

  • Temporal characterization based on autocorrelation and pump-probe techniques, coupled to microscopy;

  • The spatial evolution of the laser-modified material using X-ray and electron diffraction methods; and

  • Monitoring the temporal and spatial evolution of material removed by the laser using nonlinear time-resolved spectroscopy, such as CARS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albota, M., Beljonne, D., Bredas, J. L., Ehrlich, J. E., Fu, J. Y., Heikal, A. A., Hess, S. E., Kogej, T., Levin, M. D., Marder, S. R., McCord-Maughon, D., Perry, J. W., Rockel, H., Rumi, M., Subramaniam, C., Webb, W. W., Wu, X. L. and Xu, C., 1998, Design of organic molecules with large two-photon absorption cross sections, Science 281(5383):1653–1656.

    Article  ADS  Google Scholar 

  • Andrews, D. L., 1985, A Simple Statistical Treatment Of Multiphoton Absorption, American Journal Of Physics 53(10): 1001–1002.

    Article  ADS  Google Scholar 

  • Balistreri, M. L. M., Gersen, H., Korterik, J. P., Kuipers, L. and van Hulst, N. F., 2001, Tracking femtosecond laser pulses in space and time, Science 294(5544): 1080–1082.

    Article  ADS  Google Scholar 

  • Balistreri, M. L. M., Korterik, J. P., Kuipers, L. and van Hulst, N. F., 2000, Local observations of phase singularities in optical fields in waveguide structures, Physical Review Letters 85(2):294–297.

    Article  ADS  Google Scholar 

  • Brixner, T., Damrauer, N. H., Niklaus, P. and Gerber, G., 2001, Photoselective adaptive femtosecond quantum control in the liquid phase, Nature 414(6859):57–60.

    Article  ADS  Google Scholar 

  • Bubb, D. M., Papantonakis, M. R., Toftmann, B., Horwitz, J. S., McGill, R. A., Chrisey, D. B. and Haglund, R. F., 2002, Effect of ablation parameters on infrared pulsed laser deposition of poly(ethylene glycol) films, Journal of Applied Physics 91(12):9809–9814.

    Article  ADS  Google Scholar 

  • Callan, J. P., Kim, A. M. T., Huang, L. and Mazur, E., 2000, Ultrafast electron and lattice dynamics in semiconductors at high excited carrier densities, Chemical Physics 251(1–3): 167–179.

    Article  ADS  Google Scholar 

  • Cavalleri, A., Dekorsy, T., Chong, H. H. W., Kieffer, J. C. and Schoenlein, R. W., 2004, Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale, Physical Review B 70(16)

    Google Scholar 

  • Cavalleri, A., Rini, M., Chong, H. H. W., Fourmaux, S., Glover, T. E., Heimann, P. A., Kieffer, J. C. and Schoenlein, R. W., 2005, Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge x-ray absorption, Physical Review Letters 95(6)

    Google Scholar 

  • Cavalleri, A., Siders, C. W., Brown, F. L. H., Leitner, D. M., Toth, C., Squier, J. A., Barty, C. P. J., Wilson, K. R., Sokolowski-Tinten, K., von Hoegen, M. H., von der Linde, D. and Kammler, M., 2000, Anharmonic lattice dynamics in germanium measured with ultrafast x-ray diffraction, Physical Review Letters 85(3):586–589.

    Article  ADS  Google Scholar 

  • Cavalleri, A., Toth, C., Siders, C. W., Squier, J. A., Raksi, F., Forget, P. and Kieffer, J. C., 2001, Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition, Physical Review Letters 8723(23)

    Google Scholar 

  • Chen, L. X., 2005, Probing transient molecular structures in photochemical processes using laser-initiated time-resolved X-ray absorption spectroscopy, Annual Review Of Physical Chemistry 56(221–254.

    Article  ADS  Google Scholar 

  • Chichkov, B. N., Momma, C., Nolte, S., vonAlvensleben, F. and Tunnermann, A., 1996, Femtosecond, picosecond and nanosecond laser ablation of solids, Applied Physics a-Materials Science & Processing 63(2): 109–115.

    Article  ADS  Google Scholar 

  • Collet, E., Lemee-Cailleau, M. H., Buron-Le Cointe, M., Cailleau, H., Wulff, M., Luty, T., Koshihara, S. Y., Meyer, M., Toupet, L., Rabiller, P. and Techert, S., 2003, Laser-induced ferroelectric structural order in an organic charge-transfer crystal, Science 300(5619):612–615.

    Article  ADS  Google Scholar 

  • Demtröder, W., 2002, Laser Spectroscopy: Basic Concepts and Instrumentation (Berlin, Springer Verlag)

    Google Scholar 

  • Denk, W., Strickler, J. H. and Webb, W. W., 1990, 2-Photon Laser Scanning Fluorescence Microscopy, Science 248(4951):73–76.

    Article  ADS  Google Scholar 

  • Du, D., Liu, X., Korn, G., Squier, J. and Mourou, G., 1994, Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs, Appl. Phys. Lett. 64(23):3071–3073.

    Article  ADS  Google Scholar 

  • Dudovich, N., Oron, D. and Silberberg, Y., 2002, Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy, Nature 418(6897):512–514.

    Article  ADS  Google Scholar 

  • Dudovich, N., Oron, D. and Silberberg, Y., 2004, Quantum control of the angular momentum distribution in multiphoton absorption processes, Physical Review Letters 92(10)

    Google Scholar 

  • Feurer, T., Vaughan, J. C. and Nelson, K. A., 2003, Spatiotemporal coherent control of lattice vibrational waves, Science 299(5605):374–377.

    Article  ADS  Google Scholar 

  • Hambir, S. A., Franken, J., Hare, D. E., Chronister, E. L., Baer, B. J. and Dlott, D. D., 1997, Ultrahigh time-resolution vibrational spectroscopy of shocked molecular solids, Journal Of Applied Physics 81(5):2157–2166.

    Article  ADS  Google Scholar 

  • Hare, D. E. and Dlott, D. D., 1994, Picosecond Coherent Raman-Study Of Solid-State Chemical-Reactions During Laser Polymer Ablation, Applied Physics Letters 64(6):715–717.

    Article  ADS  Google Scholar 

  • Henyk, M., Joly, A. G., Beck, K. M. and Hess, W. P., 2003, Photon stimulated desorption from KI: Laser control of I-atom velocity distributions, Surface Science 528(1–3):219–223.

    Article  ADS  Google Scholar 

  • Herek, J. L., Wohlleben, W., Cogdell, R. J., Zeidler, D. and Motzkus, M., 2002, Quantum control of energy flow in light harvesting, Nature 417(6888):533–535.

    Article  ADS  Google Scholar 

  • Hess, W. P., Joly, A. G., Beck, K. M., Henyk, M., Sushko, P. V., Trevisanutto, P. E. and Shluger, A. L., 2005, Laser control of desorption through selective surface excitation, Journal Of Physical Chemistry B 109(42):19563–19578.

    Article  Google Scholar 

  • Hess, W. P., Joly, A. G., Gerrity, D. P., Beck, K. M., Sushko, P. V. and Shluger, A. L., 2002, Control of laser desorption using tunable single pulses and pulse pairs, Journal Of Chemical Physics 116(18):8144–8151.

    Article  ADS  Google Scholar 

  • Itoh, N. and Stoneham, A. M., 2001, Materials Processing by Electronic Excitation (Oxford, Oxford University Press)

    Google Scholar 

  • Joly, A. G., Beck, K. M., Henyk, M., Hess, W. P., Sushko, P. V. and Shluger, A. L., 2003, Surface electronic spectra detected by atomic desorption, Surface Science 544(1):L683–L688.

    Article  ADS  Google Scholar 

  • Juodkazis, S., Mizeikis, V., Seet, K. K., Miwa, M. and Misawa, H., 2005, Two-photon lithography of nanorods in SU-8 photoresist, Nanotechnology 16(6):846–849.

    Article  ADS  Google Scholar 

  • Juodkazis, S., Yamasaki, K., Mizeikis, V., Matsuo, S. and Misawa, H., 2004, Formation of embedded patterns in glasses using femtosecond irradiation, Applied Physics a-Materials Science & Processing 79(4–6): 1549–1553.

    ADS  Google Scholar 

  • Kane, D. J., Taylor, A. J., Trebino, R. and Delong, K. W., 1994, Single-Shot Measurement Of The Intensity And Phase Of A Femtosecond Uv Laser-Pulse With Frequency-Resolved Optical Gating, Optics Letters 19(14): 1061–1063.

    Article  ADS  Google Scholar 

  • Kane, D. J. and Trebino, R., 1993a, Characterization Of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating, Ieee Journal Of Quantum Electronics 29(2):571–579.

    Article  ADS  Google Scholar 

  • Kane, D. J. and Trebino, R., 1993b, Single-Shot Measurement Of The Intensity And Phase Of An Arbitrary Ultrashort Pulse By Using Frequency-Resolved Optical Gating, Optics Letters 18(10):823–825.

    Article  ADS  Google Scholar 

  • Leiderer, P., Bartels, C., Konig-Birk, J., Mosbacher, M. and Boneberg, J., 2004, Imaging optical near-fields of nanostructures, Applied Physics Letters 85(22):5370–5372.

    Article  ADS  Google Scholar 

  • Masuda, M., Sugioka, K., Cheng, Y., Aoki, N., Kawachi, M., Shihoyama, K., Toyoda, K., Helvajian, H. and Midorikawa, K., 2003, 3-D microstructuring inside photosensitive glass by femtosecond laser excitation, Applied Physics A-Materials Science & Processing 76(5):857–860.

    Article  ADS  Google Scholar 

  • Mollenauer, L. F., Smith, K., Gordon, J. P. and Menyuk, C. R., 1989, Resistance Of Solitons To The Effects Of Polarization Dispersion In Optical Fibers, Optics Letters 14(21):1219–1221.

    Article  ADS  Google Scholar 

  • Moore, D. S., Gahagan, K. T., Reho, J. H., Funk, D. J., Buelow, S. J., Rabie, R. L. and Lippert, T., 2001, Ultrafast nonlinear optical method for generation of planar shocks, Appl. Phys. Lett. 78(1):40–42.

    Article  ADS  Google Scholar 

  • Münzer, H. J., Mosbacher, M., Bertsch, M., Zimmermann, J., Leiderer, P. and Boneberg, J., 2001, Local held enhancement effects for nanostructuring of surfaces, Journal Of Microscopy-Oxford 202(129–135.

    Article  Google Scholar 

  • Oron, D., Tal, E. and Silberberg, Y., 2003, Depth-resolved multiphoton polarization microscopy by third-harmonic generation, Optics Letters 28(23):2315–2317.

    Article  ADS  Google Scholar 

  • Patterson, J. E., Lagutchev, A., Huang, W. and Dlott, D. D., 2005, Ultrafast dynamics of shock compression of molecular monolayers, Physical Review Letters 94(1)

    Google Scholar 

  • Perry, M. D., Stuart, B. C, Banks, P. S., Feit, M. D., Yanovsky, V. and Rubenchik, A. M., 1999, Ultrashort-pulse laser machining of dielectric materials, Journal of Applied Physics 85(9):6803–6810.

    Article  ADS  Google Scholar 

  • Petek, H. and Ogawa, S., 2002, Surface femtochemistry: Observation and quantum control of frustrated desorption of alkali atoms from noble metals, Annual Review Of Physical Chemistry 53(507–531.

    Article  ADS  Google Scholar 

  • Piglmayer, K., Denk, R. and Bauerle, D., 2002, Laser-induced surface patterning by means of microspheres, Applied Physics Letters 80(25):4693–4695.

    Article  ADS  Google Scholar 

  • Rabitz, H. and Zhu, W. S., 2000, Optimal control of molecular motion: Design, implementation, and inversion, Accounts Of Chemical Research 33(8):572–578.

    Article  Google Scholar 

  • Rabitz, H. A., Hsieh, M. M. and Rosenthal, C. M., 2004, Quantum optimally controlled transition landscapes, Science 303(5666): 1998–2001.

    Article  ADS  Google Scholar 

  • Rethfeld, B., 2004, Unified model for the free-electron avalanche in laser-irradiated dielectrics, Physical Review Letters 92(18)

    Google Scholar 

  • Rethfeld, B., Sokolowski-Tinten, K., von der Linde, D. and Anisimov, S. I., 2004, Timescales in the response of materials to femtosecond laser excitation, Applied Physics A-Materials Science & Processing 79(4–6):767–769.

    ADS  Google Scholar 

  • Siwick, B. J., Dwyer, J. R., Jordan, R. E. and Miller, R. J. D., 2004, Femtosecond electron diffraction studies of strongly driven structural phase transitions, Chemical Physics 299(2–3):285–305.

    Article  ADS  Google Scholar 

  • Siwick, B. J., Green, A. A., Hebeisen, C. T. and Miller, R. J. D., 2005, Characterization of ultrashort electron pulses by electron-laser pulse cross correlation, Optics Letters 30(9): 1057–1059.

    Article  ADS  Google Scholar 

  • Sokolowski-Tinten, K., Bialkowski, J., Cavalleri, A., von der Linde, D., Oparin, A., Meyer-ter-Vehn, J. and Anisimov, S. I., 1998, Transient states of matter during short pulse laser ablation, Physical Review Letters 81(1):224–227.

    Article  ADS  Google Scholar 

  • Squier, J. A. and Muller, M., 1999, Third-harmonic generation imaging of laser-induced breakdown in glass, Applied Optics 38(27):5789–5794.

    Article  ADS  Google Scholar 

  • Squier, J. A., Muller, M., Brakenhoff, G. J. and Wilson, K. R., 1998, Third harmonic generation microscopy, Optics Express 3(9):315–324.

    Article  ADS  Google Scholar 

  • Stoian, R., Boyle, M., Thoss, A., Rosenfeld, A., Korn, G., Hertel, I. V. and Campbell, E. E. B., 2002, Laser ablation of dielectrics with temporally shaped femtosecond pulses, Applied Physics Letters 80(3):353–355.

    Article  ADS  Google Scholar 

  • Stoian, R., Mermillod-Blondin, A., Winkler, S. W., Rosenfeld, A., Hertel, I. V., Spyridaki, M., Koudoumas, E., Tzanetakis, P., Fotakis, C., Burakov, I. M. and Bulgakova, N. M., 2005, Temporal pulse manipulation and consequences for ultrafast laser processing of materials, Optical Engineering 44(5)

    Google Scholar 

  • Stoneham, A. M., Ramos, M. M. D. and Ribeiro, R. M., 1999, The mesoscopic modeling of laser ablation, Appl. Phys. A 69(S81–S86.

    Article  ADS  Google Scholar 

  • Strickler, J. H. and Webb, W. W., 1991, 3-Dimensional Optical-Data Storage In Refractive Media By 2-Photon Point Excitation, Optics Letters 16(22):1780–1782.

    Article  ADS  Google Scholar 

  • Stuart, B. C., Feit, M. D., Herman, S., Rubenchik, A. M., Shore, B. W. and Perry, M. D., 1996, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics, Physical Review B 53(4):1749–1761.

    Article  ADS  Google Scholar 

  • Stuart, B. C., Feit, M. D., Rubenchik, A. M., Shore, B. W. and Perry, M. D., 1995, Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses, Physical Review Letters 74(12):2248–2251.

    Article  ADS  Google Scholar 

  • Trebino, R., DeLong, K. W., Fittinghoff, D. N., Sweetser, J. N., Krumbugel, M. A., Richman, B. A. and Kane, D. J., 1997, Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, Review Of Scientific Instruments 68(9):3277–3295.

    Article  ADS  Google Scholar 

  • Warren, W. S., Rabitz, H. and Dahleh, M., 1993, Coherent Control Of Quantum Dynamics-The Dream Is Alive, Science 259(5101): 1581–1589.

    Article  MathSciNet  ADS  Google Scholar 

  • Weiner, A. M., 2000, Femtosecond pulse shaping using spatial light modulators, Review Of Scientific Instruments 71(5):1929–1960.

    Article  ADS  Google Scholar 

  • Weiner, A. M., Leaird, D. E., Wiederrecht, G. P. and Nelson, K. A., 1990, Femtosecond Pulse Sequences Used For Optical Manipulation Of Molecular-Motion, Science 247(4948):1317–1319.

    Article  ADS  Google Scholar 

  • Williams, R. M., Piston, D. W. and Webb, W. W., 1994, 2-Photon Molecular-Excitation Provides Intrinsic 3-Dimensional Resolution For Laser-Based Microscopy And Microphotochemistry, Faseb Journal 8(11):804–813.

    Google Scholar 

  • Yu, A. C., Ye, X., Ionascu, D., Cao, W. X. and Champion, P. M., 2005, Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range, Review Of Scientific Instruments 76(11)

    Google Scholar 

  • Zhigilei, L. V. and Garrison, B. J., 2000, Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes, Journal Of Applied Physics 88(3):1281–1298.

    Article  ADS  Google Scholar 

  • Zumbusch, A., Holtom, G. R. and Xie, X. S., 1999, Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering, Physical Review Letters 82(20):4142–4145.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Haglund, R.F. (2007). Time and Space-Resolved Spectroscopy. In: Phipps, C. (eds) Laser Ablation and its Applications. Springer Series in Optical Sciences, vol 129. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30453-3_8

Download citation

Publish with us

Policies and ethics