Skip to main content

Next-Generation Hybrid Nanocomposite Materials Based on Conducting Organic Polymers: Energy Storage and Conversion Devices

  • Chapter
  • First Online:

Abstract

This review deals with the most recent developments in the field of hybrid nanocomposite materials based on conducting organic polymers (COPs) with special emphasis on their impact on energy-related devices. Our aim is to introduce the reader to the fascinating world of conducting organic polymers, from basic aspects related to their working mechanism to their interplay with inorganic compounds to form hybrid organic–inorganic functional materials. The multifunctionality observed from these nanocomposite materials empower their application in a wide variety of energy-related devices capable to produce, convert or save energy. In addition to the later is their low-cost fabrication capability, linked to COPs processability, which makes hybrid organic–inorganic materials a powerful resource for the energy sector. In this review, we will focus on the design of hybrid nanocomposite materials based on COPs and their application in the “state-of the art” energy-related devices such as electrochemical supercapacitors and photovoltaic devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    watt-peak, a unit of power output representing the maximum output in watt of a 1 m2 solar panel at 25°C.

Abbreviations

C:

Carbon

C2A:

Carboxylated diacetylene

CNs:

Carbon nanotubes

CNT:

Carbon nanotube

COP:

Conducting organic polymer

CV:

Cyclic voltammetry

ETA:

Extremely thin absorbers

FF:

Fill factor

HTM:

Hole-transport material

HSC:

Hybrid organic–inorganic solar cell

J SC :

Current density in the short-circuit mode

MDMO-PPV:

Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene]

MEH-PPV:

Poly[2-methoxy-5-(2′-ethylhexyloxy-p-phenylenevinylene]

MWNT:

Multiwalled carbon nanotube

POTP:

Poly(9,9′-dioctylfluorene-co-bithiophene)

PAni:

Polyaniline

PA-PPV:

Poly[N-phenylimino-1,4-phenylene-1,2-ethylene-1,4-(2,5-dioctoxy)phenylene-1,2-ethenylene-1,4-phenylene]

PCBM:

1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61

PEP:

Photoelectrochemical polymerization

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PEP:

Photoelectrochemical polymerization

PPy:

Polypyrrole

PVK:

Poly(N-vinyl carbazole)

PU2T:

Poly(3-undecyl-2,2′-bithiophene)

P3HT:

Poly(3-hexylthiophene)

P3OT:

Poly(3-octylthiophene)

P4BTH:

Poly(4-undecyl-2,2′-bithiophene)

SWNT:

Single-walled carbon nanotube

PMOs:

Polyoxometalates

PW12:

Phosphotungstic acid (H3PW12O40)

PMo12:

Phosphomolybdic acid (H3PMo12O40)

SiW12:

Silicotungstic acid (H4SiW12O40)

Spiro-OMeTAD:

2,2′,7,7′-Tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene

ss-DSSC:

Solid-state dye-sensitized solar cell

V OC :

Voltage in open-circuit mode

VK:

N-Vinyl carbazole

References

  1. NanoroadSME. Nanomaterial roadmap 2015. Roadmap report concerning the use of nanomaterials in the energy sector. http://www.nanoroad.net/index.php?topic = download.

    Google Scholar 

  2. Schell International. (2001) Energy needs, choices and possibilities. Scenarios to 2050. http://www.shell.com/scenarios.

  3. Winter M. and Brodd R.J. (2004) What are batteries, fuel cells and supercapacitors? Chem. Rev. 104:4245–4269.

    CAS  Google Scholar 

  4. Edwards JH, Badwal SPS, Duffy GJ, Lasich J, Ganakas G. (2002) The application of solid-state ionic technology for novel methods of energy generation and supply. Solid State Ionics 152–153:843–852.

    Google Scholar 

  5. Hong JI, Yeo IH, Paik WK. (2001) Conducting polymer with metal oxide for electrochemical capacitor – poly(3,4-ethylenedioxythiophene) RuO2 electrode. J. Electrochem. Soc. 148(2):A156–A163.

    CAS  Google Scholar 

  6. Conway, B.E. (1999) Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications. Kluwer Academia/Plenum, New York.

    Google Scholar 

  7. Huang LM, Wen T-C, Gopalan A. (2006) Electrochemical and spectroelectrochemical monitoring of supercapacitance and electrochromic properties of hydrous ruthenium oxide embedded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) composite. Electrochem. Acta 51:3469–3476.

    CAS  Google Scholar 

  8. Cuentas-Gallegos K, Lira-Cantú M, Casañ-Pastor P, Gómez-Romero P. (2005) Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv. Funct. Mater. 15:1125–1133.

    CAS  Google Scholar 

  9. Prasad KR, Munichandraiah N. (2002) Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance, polyaniline coated, stainless-steel electrodes. J. Power Sources 112(2):443–451.

    CAS  Google Scholar 

  10. Shukla A.K., Sampath S., Vijayamohanan K. (2000) Electrochemical supercapacitors: Energy storage beyond batteries. Curr. Sci. 79(12):1656–1661.

    CAS  Google Scholar 

  11. Baibarac M, Gómez-Romero P. (2005) Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications. J. Nanosci. Nanotechnol. 6(2):289–302.

    Google Scholar 

  12. Shirakawa H, Louis EJ, McDiarmid AG, Chaing CK, Heeger AJ. (1997) Synthesis of electrically conducting organic polymers: halogen derivatives of poly(acetylene), (CH)x. J. Chem. Soc. Commun. 16:578–579.

    Google Scholar 

  13. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB. (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541.

    CAS  Google Scholar 

  14. Pron A. and Rannou P. (2002) Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 27:135–190.

    CAS  Google Scholar 

  15. Gómez-Romero P. (2001) Hybrid organic-inorganic materials. In search for synergic activity. Adv. Mater. 13:163–174.

    Google Scholar 

  16. Lira-Cantú M and Gómez-Romero P. (1998) Electrochemical and chemical syntheses of the hybrid organic-inorganic electroactive material formed by phosphomolybdate and polyaniline. Application as cation-insertion electrodes. Chem. Mater. 10:698–704.

    Google Scholar 

  17. Zheng JP, Huang J, Jow TR. (1997) The limitations of energy density for electrochemical capacitors. J. Electrochem. Soc. 144:2026–2031.

    CAS  Google Scholar 

  18. Breeze AJ, Schlesinger Z, Carter SA, Brock PJ. (2001) Charge transport in TiO2/MEH-PPV polymer photovoltaics. Phys. Rev. B 64:125205.

    Google Scholar 

  19. Hu CC and Tsou TW. (2003) The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies. J. Power Sources 115:179–182.

    CAS  Google Scholar 

  20. Jiang J, Kucernak A. (2002) Electrochemical supercapacitor material based on manganese oxide: Preparation and characterization. Electrochim. Acta 47:2381–2386.

    CAS  Google Scholar 

  21. Kudo T, Ikeda Y, Watanabe T, Hibino M, Miyayama M, Abe H, Kajita K. (2002) Amorphous V2O5/carbon composites as electrochemical supercapacitors electrodes. Solid State Ionics 152–15:833–841.

    Google Scholar 

  22. Wohlfahrt-Mehrens M, Schenk J, Wilde PM, Abdelmula E, Axmann P, Garche J. (2002) New materials for supercapacitors. J. Power Sources 105:182–188.

    CAS  Google Scholar 

  23. Wu NL, Wang SY, Han CY, Wu DS, Shiue LR. (2003) Electrochemical capacitor of magnetite in aqueous electrolytes. J. Power Sources 113:173–178.

    CAS  Google Scholar 

  24. Chen WC, Wen TC, Hsisheng T. (2003) Polyaniline-deposited porous carbon electrode for supercapacitors. Electrochim. Acta 48:641.

    CAS  Google Scholar 

  25. Mastragostino M, Arbizzani C, Soavi F. (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148:493–498.

    CAS  Google Scholar 

  26. Park JH, Park OO. (2002) Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. J. Power Sources 111:185–190.

    CAS  Google Scholar 

  27. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH. (2002) Synthesis and electrochemical properties of V2O5 intercalated with binary polymer. J. Power Sources 103:305.

    CAS  Google Scholar 

  28. Zhou Z, Cai N, Zhou Y. (2005) Capacitive characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon. Mater. Chem. Phys. 94:371–375.

    CAS  Google Scholar 

  29. White AM and Slade RCT. (2003) Polymer electrodes doped with heteropolymetallates and their use within solid-state supercapacitors. Synth. Met. 139:123–131.

    CAS  Google Scholar 

  30. Janssen RAJ, Hummelen JC, Sariciftci NS. (2005) Polymer-fullerene bulk heterojunction solar cells. MRS Bull. 30:33–36.

    CAS  Google Scholar 

  31. Takel T, Yoshimura K, Yonesaki Y, Kumada N, Kinomura N. (2005) Preparation of polyaniline/mesoporous silica hybrid and its electrochemical properties. J. Porous Mater. 12(4):337–343.

    Google Scholar 

  32. Machida K, Furuuchi K, Min M, Naoi K. (2004) Mixed proton-electron conducting nanocomposite based on hydrous RuO2 and polyaniline derivatives for supercapacitors. Electrochemistry 72(6):402–404.

    CAS  Google Scholar 

  33. Girija TC, Sangaranarayanan MV. (2006) Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors. J. Power Sourc. 156:705–711.

    CAS  Google Scholar 

  34. Wang XF, Ruan DB, Wang DZ, Liang J. (2005) Hybrid electrochemical supercapacitors based on polyaniline and activated carbon electrodes. Acta Phys. Chim. Sin. 21(3):26–266.

    Google Scholar 

  35. Gómez-Romero P, Lira-Cantú M. (1997) Chemical polymerization of polyaniline and polypyrrole by phosphomolibdic acid. In situ formation of hybrid organic-inorganic materials. Solid State Ionics 101–103:875–880.

    Google Scholar 

  36. Pope MT, Müller A. (eds.). (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. In Topics in Molecular Organization and Engineering. Kluwer, Dordrecht.

    Google Scholar 

  37. Gómez-Romero P and Casañ-Pastor N. (1996) Photoredox chemistry in oxide clusters. Photochromic and redox properties of polyoxometalates in connection with analog solid state colloidal systems. J. Phys. Chem. 100:12448.

    Google Scholar 

  38. Gómez-Romero P and Lira-Cantú M (1997) Hybrid organic-inorganic electrodes: The molecular material formed between polypyrrole and the phosphomolybdate anion. Adv. Mat. 9:144.

    Google Scholar 

  39. Barbero C, Miras MC, Schnyder B, Haas O, Kotz R. (1994) Sulfonated polyaniline films as cation insertion electrodes for battery applications. Part 1 – Structural and electrochemical characterization. J. Mater. Chem. 4:1775–1783.

    CAS  Google Scholar 

  40. Novak P, Mueller K, Santhanam KSV, Haas O. (1997) Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97:207.

    CAS  Google Scholar 

  41. Oyama N, Tatsuma T, Sato T, Sotomura T. (1995) Dimercaptan-polyaniline composite electrodes for lithium batteries with high-energy density. Nature 373:6515.

    Google Scholar 

  42. Scrosati B. Electrochemical properties of conducting polymers. (1988) Progress in Solid State Chem. 18(1):1–77.

    Google Scholar 

  43. Chen WC, Wen TC. (2003) Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors. J. Power Sources. 117(1–2):273–282.

    CAS  Google Scholar 

  44. Hashmi SA, Upadhyaya HM. (2002) Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte. Solid State Ionics 152:883–889.

    Google Scholar 

  45. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH. (2002) Redox supercapacitor using polyaniline doped with Li salt as electrode. Solid State Ionics 152:861–866.

    Google Scholar 

  46. Gómez-Romero P and Sanchez C. (2004) Functional hybrid materials. Wiley, Weinheim (ISBN 3-527-30484-3).

    Google Scholar 

  47. Kulesza PJ, Malik MA, Karwowska B, Miecznikowski K, Dzwolak W, Gursynska A, Grzybowsa IN. (1997) Electrochemical Capacitors, (FM Delnick, D Ingersoll, X Andrieu, K Naoi eds.). Electrochemical Society, Pennington, UK. PV 96–2; 89.

    Google Scholar 

  48. Torres-Gómez G, Lira-Cantú M, Gómez-Romero P. (1999). Molecular hybrid materials based on conducting organic polymers and electroactive/photoactive inorganic species. J. New Electrochem. Syst. 2:145.

    Google Scholar 

  49. Dai L. (1999) Advanced syntheses and microfabrication of conjugated polymers, C60-containing polymers and carbon nanotubes for optoelectronic applications. Polym. Adv. Technol. 10(7):357–420.

    CAS  Google Scholar 

  50. Baibarac M, Mihut L, Preda N, Lefrant S. (2005) Surface-enhanced Raman scattering studies on C-60 fullerene self-assemblies. Carbon 43(1):1–9.

    CAS  Google Scholar 

  51. Baibarac M, Baltog I, Godon C, Lefrant S, Chauvet O. (2004) Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization. Carbon 42(15):3143–3152.

    CAS  Google Scholar 

  52. Li C, Liu CL, Li FS, Gong QH. (2003) Optical limiting performance of two soluble multi-walled carbon nanotubes. Chem. Phys. Lett. 380(1–2):201–205.

    CAS  Google Scholar 

  53. Wu W, Li J, Liu L, Yanga L, Guo ZX, Dai L, Zhu D. (2002) The photoconductivity of PVK-carbon nanotube blends. Chem. Phys. Lett. 364(1–2):196–199.

    CAS  Google Scholar 

  54. Wang W, Lin Y, Sun YP. (2005) Poly(N-vinyl carbazole)-functionalized single-walled carbon nanotubes: Synthesis, characterization, and nanocomposite thin films. Polymer 46(20):8634–8640.

    CAS  Google Scholar 

  55. Hirsch A. (2002) Functionalization of single-walled carbon nanotubes. Ang. Chemie. Intl. Ed. 41(11):1853–1859.

    CAS  Google Scholar 

  56. Coakley KM, Liu Y, Goh C, McGehee MD. (2005) Ordered organic-inorganic bulk heterojunction photovoltaic cells. MRS Bull 30:37–40.

    CAS  Google Scholar 

  57. Halls JJM, Walsh CA, Greenham NC, Marseglia E, Friend RH, Moratti SC, Holmes AB. (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376(6540):498–500.

    CAS  Google Scholar 

  58. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. (1995) Polymer photovoltaic cells – enhanced efficiencies via network of internal donor-acceptor heterojunctions. Science 270:1789.

    CAS  Google Scholar 

  59. Spanggaard H, Krebs FK. (2004) A brief history of the development of organic and polymeric photovoltaics. Sol. Energ. Mater. Sol. Cell 83:125–146.

    CAS  Google Scholar 

  60. Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, Wudl F. (1993) Semiconducting polymer-buckminsterfullerene heterojunctions – diodes, photodiodes, and photovoltaic cells. Appl. Phys. Lett. 62:585–587.

    CAS  Google Scholar 

  61. Hoppe H and Sariciftci NS. (2006) Organic solar cells: An overview. J. Mater. Res. 19(7):1924–1945.

    Google Scholar 

  62. Lira-Cantú M and Gómez-Romero P. (2004) Multifunctional hybrid materials based on conducting organic polymers. Nanocomposite systems with photo-electro-ionic properties and applications. In Functional Hybrid Materials (Gómez-Romero P and Sanchez C eds.). Wiley, Weinheim, pp. 210.

    Google Scholar 

  63. Singh TB and Sariciftci NS. (2006) Progress in plastic electronics devices. Ann. Rev. Res. 36:199–230.

    CAS  Google Scholar 

  64. Huynh WU, Dittmer JJ, Alivisatos AP. (2002) Hybrid nanorods-polymer solar cells. Science 295(5564):2425–2427.

    CAS  Google Scholar 

  65. Günes S, Neugebauer H, Sariciftci NS, Roither H, Kovalenko M, Pillwein G, Heiss W. (2006) Hybrid solar cells using HgTe nanocrystals and nanoporous TiO2 electrodes. Adv. Funct. Mater. 16(8):1095–1099.

    Google Scholar 

  66. Cui DH, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M. (2006) Harvest of linear infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88(18):183111.

    Google Scholar 

  67. McDonald SA, Konstantatos G, Zhang SG, Cyr PW, Klem EJD, Levina L, Sargent EH. (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4(2):138–142.

    CAS  Google Scholar 

  68. Ackermann J, Videlot C, El Kassimi A, Guglielmetti R, Fages F. (2005) Highly efficient hybrid solar cells based on an Octithiophene-GaAs heterojunction. Adv. Funct. Mater. 15(5):810–817.

    CAS  Google Scholar 

  69. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec J. (2006) Design rules for donors in bulk-heterojunction solar cells- Towards 10% energy-conversion efficiency. Adv. Mater. 18:789–794.

    CAS  Google Scholar 

  70. Coakley KM, McGehee MD. (2003) Photovoltaic cells made from conjugated polymers infiltratred into mesoporous titania. Appl. Phys. Lett. 83(16):3380–3382

    CAS  Google Scholar 

  71. Coakley KM, Liu Y, McGehee MD, Frindell KL, Stucky GD. (2003) Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv. Funct. Mater. 13(4):301–306

    CAS  Google Scholar 

  72. Coakley KM, Srinivasan BS, Ziebarth JM, Goh C, Liu Y, McGehee MD. (2005) Enhanced hole mobility in regioregular polythiophene infiltrated in straight nanopores. Adv. Funct. Mater. 15:1927–1932.

    CAS  Google Scholar 

  73. Kwong CY, Choy WCH, Djurisic AB, Chui PC, Cheng KW, Chan WK. (2004) Poly(3-hexylthiophene): TiO2 nanocomposites for solar cell applications. Nanotechnol. 15(9):1156–1161.

    CAS  Google Scholar 

  74. Liu YX, Summers MA, Edder C, Frechet JMJ, McGehee MD. (2005) Using resonance energy transfer to improve exciton harvesting in organic-inorganic hybrid photovoltaic cells. Adv. Mater. 17(24):2960–2965.

    CAS  Google Scholar 

  75. Slooff LH, Wienk MM, Kroon JM. (2004) Hybrid TiO2: polymer photovoltaic cells made from a titanium oxide precursor. Thin Solid Films 451:634–638.

    Google Scholar 

  76. Huisman CL, Goossens A, Schoonman J. (2003) Preparation of a nanostructured composite of titanium dioxide and polythiophene: a new route towards 3D heterojunction solar cells. Synth. Met. 138:237–241.

    CAS  Google Scholar 

  77. Grant CD, Schwartzberg AM, Smedtad GP, Kowalik J, Tolbert LM, Zhang JZ. (2002) Characterization of nanocrystalline and thin film TiO2 solar cells with poly(3-undecyl-2,2′-bithiophene) as a sensitizer and hole conductor. J. Electroanal. Chem. 522:40–48.

    CAS  Google Scholar 

  78. Grant CD, Schwartzberg AM, Smestad GP, Kowalik J, Tolbert LM, Zhang JZ. (2003) Optical and electrochemical characterization of poly(3-undecyl-2,2′-bithiophene) in thin film solid state TiO2 photovoltaic solar cells. Synth. Met. 132:197–204.

    CAS  Google Scholar 

  79. Ravirajan P, Haque SA, Poplavskyy D, Durrant JR, Bradley DDC, Nelson J. (2004) Nanoporous TiO2 solar cells sensitized with a fluorine-thiophene copolymer. Thin Solid Films 451–452:624–629.

    Google Scholar 

  80. van Hal PA, Wienk MM, Kroon JM, Verhees WJH, Slooff LH, van Gennip WJH, Jonkheijm P, Janssen RAJ. (2003) Photoinduced electron transfer and photovoltaic response of a MDMO-PPV:TiO2 bulk-heterojunction. Adv. Mater. 15(2):118–120

    CAS  Google Scholar 

  81. van Hal PA, Christiaans MPT, Wienk MM, Kroon JM, Janssen RAJ. (1999) Photoinduced electron transfer from conjugated polymers to TiO2. J. Phys. Chem. B 103(21):4352–4359.

    CAS  Google Scholar 

  82. Slooff LH, Kroon JM, Loos J, Koetse MM, Sweelssen J. (2005) Influence of the relative humidity on the performance of polymer/TiO2 photovoltaic cells. Adv. Funct. Mater. 15(4):689–694.

    CAS  Google Scholar 

  83. Wang H, Oey CC, Djurisic AB, Xie MH, Leung YH. (2005) Titania bicontinuous network structures for solar cell applications. Appl. Phys. Lett. 87:023507.

    Google Scholar 

  84. Ravirajan P, Bradley DDC, Nelson J, Haque SA, Durrant JR, Smit HJP, Kroon JM. (2005) Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)polystyrene sulphonate as hole collector. Appl. Phys. Lett. 86(14):143101

    Google Scholar 

  85. Ravirajan P, Haque SA, Durrant JR, Bradley DDC, Nelson J (2005). The effect of polymer photoelectronic properties on the performance of multilayer hybrid polymer/TiO2 solar cells. Adv. Funct. Mater. 15(4):609–618.

    CAS  Google Scholar 

  86. Arango AC, Johnson LR, Bliznyuk VN, Schlesinger Z, Carter SA, Horhold HH. (2000) Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion. Adv. Mater. 12:1689.

    CAS  Google Scholar 

  87. Liu Z, Zhou J, Xue H, Shen L, Zang H, Chen W. (2006) Polyaniline/TiO2 solar cells. Synth. Met. 156:721–723.

    CAS  Google Scholar 

  88. Song MY, Kim KJ, Kim DY. (2005) Enhancement of photovoltaic characteristics using a PEDOT interlayer in TiO2/MEHPPV heterojunction devices. Sol. Energ. Mater. Sol. Cells 85:31–39.

    Google Scholar 

  89. Fan Q, McQuillin B, Bradley DDC, Whitelegg S, Seddon AB. (2001) A solid state solar cell using sol–gel processed material and a polymer. Chem. Phys. Lett. 347:325–330.

    CAS  Google Scholar 

  90. Beek WJE, Wienk MM, Janssen RAJ. (2004) Efficient hybrid solar cells from zinc oxide nanoparticles and conjugated polymers. Adv. Mater. 16:1009–1013.

    CAS  Google Scholar 

  91. Beek WJE, Wienk MM, Kemerink M, Yang XN, Janssen RAJ. (2005) Hybrid zinc oxide conjugated polymer bulk heterojunction solar cell. J. Phys. Chem. B 109:9505–9516

    CAS  Google Scholar 

  92. Beek WJE, Wienk MM, Janssen RAJ. (2005) Hybrid polymer solar cells based on zinc oxide. J. Mater. Chem. 15:2985–2988

    CAS  Google Scholar 

  93. Beek WJE, Slooff LH, Wienk MM, Kroon JIM, Janssen RAJ (2005). Hybrid solar cells using a zinc oxide precursor and a conjugated polymer. Adv. Funct. Mater. 15:1703–1707.

    CAS  Google Scholar 

  94. Beek WJE, Wienk MM, Janssen RAJ. (2006) Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv. Funct. Mater. 16:112–1116.

    Google Scholar 

  95. Olson DC, Piris J, Collins RT, Shaheen SE, Ginley DS. (2006) Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 496(1):26–29.

    CAS  Google Scholar 

  96. Peiro AM, Ravirajan P, Govender K, Boyle DS, O’Brien P, Bradley DDC, Nelson J, Durrant JR. (2006) Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J. Mater. Chem. 16(21):2088–2096.

    CAS  Google Scholar 

  97. Ravirajan P, Peiro AM, Nazeeruddin MK, Graetzel M, Bradley DDC, Durrant JR, Nelson J. (2006) Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and amphiphillic molecular interface layer. J. Phys. Chem. B 110(15):7635–7639.

    CAS  Google Scholar 

  98. Lira-Cantú M, Norrman K, Andreasen, JW, Krebs FC. (2006) Oxygen release and exchange in niobium oxide MEH-PPV hybrid solar cells. Chem. Mater. 18:5684–5690.

    Google Scholar 

  99. Mozer AJ, Wada Y, Jiang KJ, Masaki N, Yanagida S, Mori SN. (2006) Efficient dye-sensitized solar cells based on a 2-thiophen-2-yl-vinyl-conjugated ruthenium photosensitizer and conjugated polymer hole conductor. Appl. Phys. Lett. 89:043509.

    Google Scholar 

  100. Greenham NC, Peng XG, Alivisatos AP. (1996) Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54(24):17628–17637.

    CAS  Google Scholar 

  101. Murakoshi K, Kogure R, Wada Y, Yanagida S. (1998) Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole. Sol. Energ. Mater. Sol. Cell 55(1–2):113–125.

    CAS  Google Scholar 

  102. Arici E, Sariciftci NS, Meissner D. (2003) Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv. Funct. Mater. 13(2):165–171.

    CAS  Google Scholar 

  103. Arici E, Hoppe H, Schaffler F, Meissner D, Malik MA, Sariciftci NS. (2004) Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems. Appl. Phys. A Mat. Sci. Proc. 79(1):59–64.

    CAS  Google Scholar 

  104. Bereznev S, Konovalov I, Opik A, Kois J. (2005) Hybrid CuInS2/polymer and CuInS2/poly(3,4-ethylenedioxythiophene) photovoltaic structures. Synth. Met. 152(1–3):81–84.

    CAS  Google Scholar 

  105. Jayadevan KP, Tseng TY. (2005) One-dimensional semiconductor nanostructures as absorber layers in solar cells. J. Nanosci. Nanotech. 5(11):1768–1784.

    CAS  Google Scholar 

  106. Gao LL, Tong B, Yao GJ, Dong YP, Zhang MF, Lam J, Yip W, Tang BZ. (2005) In situ complexes of self-assembled films of conjugated polymers with PbS nanoparticles and their photovoltaic properties. Acta Polym. Sin. 3:313–316.

    Google Scholar 

  107. Watt AAR, Meredith P, Riches JD, Atkinson S, Rubinsztein-Dunlop H. (2004) A PbS quantum-cube: conducting polymer composite for photovoltaic applications. Curr. Appl. Phys. 4(2–4):320–322.

    Google Scholar 

  108. Watt AAR, Blake D, Warner JH, Thomsen EA, Tavenner EL, Rubinsztein-Dunlop H, Meredith P. (2005) Lead sulfide nanocrystal: conducting polymer solar cells. J. Phys. D Appl. Phys. 38(12):2006–2012.

    CAS  Google Scholar 

  109. Zhang S, Cyr PW, McDonald SA, Konstantatos G, Sargent EH. (2005) Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconductor polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. App. Phys. Lett. 87(23):233101.

    Google Scholar 

  110. Ackermann J, Videlot C, El Kassimi A. (2002) Growth of organic semiconductors for hybrid solar cell application. Thin Solid Films 403–404:157–161.

    Google Scholar 

  111. Hu CC and Chu CH. (2000) Electrochemical and textural characterization of Iridium-doped polyaniline films for electrochemical capacitors. Mater. Chem. Phys. 65:329–338.

    CAS  Google Scholar 

  112. Milliron D, Gur I, Alivisatos AP. (2005) Hybrid organic-nanocrystal solar cells. MRS Bull. 30:41–44.

    CAS  Google Scholar 

  113. Milliron DJ, Hughes SM, Cui Y, Manna L, Li JB, Wang LW, Alivisatos AP. (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430(6996):190–195.

    CAS  Google Scholar 

  114. Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP. (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 12:382–385.

    Google Scholar 

  115. Maria A, Cyr P, Klem E, Levina L, Sargen H. (2005) Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency. Appl. Phys. Lett. 87:213112.

    Google Scholar 

  116. Kroeze JE, Savenije TJ, Vermeulen MJW, Warman JM. (2003) Contactless determination of the conductivity action spectrum, exciton diffusion length, and charge separation efficiency in polythiophene-sensitized TiO2 bilayers. J. Phys. Chem. B 107(31):7696–7705.

    CAS  Google Scholar 

  117. Kwong CY, Djurisic AB, Chui PC, Cheng KW, Chan WK. (2004) Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells. Chem. Phys. Lett. 384(4–6):372–375.

    CAS  Google Scholar 

  118. Lira-Cantú M, Krebs FC. (2005) Polymer Photovoltaics: From Conjugated Polymers to Hybrid Organic-Inorganic Solar Cells. In Recent Research Developments in Applied Physics Vol. 8 (S.G. Pandalai eds.). Transworld Research Network (ISBN:81-7895-187-8).

    Google Scholar 

  119. Lira-Cantú M and Krebs FC. (2006) Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2-TiO2): Performance improvement during long time irradiation. Sol. Energ. Mater. Sol. Cells 90:2076–2086.

    Google Scholar 

  120. Lira-Cantú M, Norrman K, Andreasen JW, Casan-Pastor N, Krebs FC. (2007) Detrimental effect of inert atmospheres on hybrid solar cells based on semiconductor oxides. J. Electrochem. Soc. 154(6):B508–B513.

    Google Scholar 

  121. Kroeze JE, Savenije TJ. (2004) The application of a low-bandgap conjugated oligomer for the sensitization of SnO2 and TiO2. Thin Solid Films 451–45:54–59.

    Google Scholar 

  122. Moser J-E. (2005) Solar Cells. Later rather than sooner. Nat. Mater. 4:723–724.

    CAS  Google Scholar 

  123. Snaith HJ, Zakeeruddin SM, Schmidt-Mende L, Klein C, Graetzel M. (2005) Ion-coordinating sensitizer in solid-state hybrid solar cells. Angew. Chem. Int. Ed. 44:6413–6417.

    CAS  Google Scholar 

  124. Xiao-e L, Green ANM, Haque SA, Mills A, Durtant JR. (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J. Photochem. Photobio. A Chem. 162(2–3):253–259.

    Google Scholar 

  125. Cao F, Oskam G, Searson PC. (1995) A solid state, dye sensitized photoelectrochemical cell. J. Phys. Chem. 99:17071–17073.

    CAS  Google Scholar 

  126. Li B, Wang L, Kang B, Wang P, Qiu Y. (2006) Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energ. Mater. Sol. Cells 90:549–573.

    CAS  Google Scholar 

  127. Durrant JR, Haque SA. (2003) Solar cells. A solid compromise. Nat. Mater. 2:362–363.

    CAS  Google Scholar 

  128. Yanagida S. (2006) Recent research progress of dye-sensitized solar cells in Japan. C.R. Chimie 9:597–604.

    CAS  Google Scholar 

  129. Graetzel M. (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobio. A Chem. 164(1–3):3–14.

    Google Scholar 

  130. Guo L, Dai SY, Wang KJ, Fang XQ, Shi CW, Pan X. (2005) Dye-sensitized Nano-TiO2 thin membrane solar cells based on (PVDF-HFP)-type gel electrolytes. Chem. J. Chin. Univ. Chin. 26(10):1934–1937.

    CAS  Google Scholar 

  131. Kubo W, Kambe S, Nakade S, Kitamura T, Hanabusa K, Wada Y, Yanagida S. (2003) Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J. Phys. Chem. B 107(18):4374–4381.

    CAS  Google Scholar 

  132. Mohmeyer N, Wang P, Schmidt HW, Zakeeruddin SM, Graetzel M. (2004) Quasi-solid-state dye sensitized solar cells with 1,3: 2,4-di-O-benzylidene-D-sorbitol derivatives as low molecular weight organic gelators. J. Mater. Chem. 14(12):1905–1909.

    CAS  Google Scholar 

  133. Stangar UL, Orel B, Neumann B, Stathatos E, Lianos P. (2003) A sol–gel type of electrolyte for a dye-sensitized solar cell: Attenuated total reflectance (ATR) vibrational spectra studies. J. Sol Gel Sci. Tech. 26(1–3):1113–1118.

    CAS  Google Scholar 

  134. Stathatos E, Lianos P. (2002) Organic–inorganic nanocomposite gels employed as electrolyte supports in dye-sensitized photoelectrochemical cells. Int. J. Photoenerg. 4(1):11–16.

    CAS  Google Scholar 

  135. Stathatos E, Lianos P, Vuk AS, Orel B. (2004) Optimization of a quasi-solid-state dye-sensitized photoelectrochemical solar cell employing a ureasil/sulfolane gel electrolyte. Adv. Funct. Mater. 14(1):45–48.

    CAS  Google Scholar 

  136. Stathatos E, Lianos R, Zakeeruddin SM, Liska P, Graetzel M. (2003) A quasi-solid-state dye-sensitized solar cell based on a sol–gel nanocomposite electrolyte containing ionic liquid. Chem. Mater. 15(9):1825–1829.

    CAS  Google Scholar 

  137. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Graetzel M. (2003) A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2(6):402–407.

    CAS  Google Scholar 

  138. Kato T, Okazaki A, Hayase S. (2006) Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells – The comparison of nano-particle cross-linkers with polymer cross-linkers. J. Photochem. Photobio. A Chem. 179(1–2):42–48.

    CAS  Google Scholar 

  139. Kawano R, Tokuda H, Katakabe T, Nakamoto H, Kokubo H, Imabayashi S, Watanabe M. (2006) Specific charge transport in ionic liquids and ion gels and the importance in material science. Kob. Ronbu. 63(1):31–40.

    CAS  Google Scholar 

  140. Matsui H, Okada K, Kawashima T, Ezure T, Tanabe N, Kawano R, Watanabe M. (2004) Application of an ionic liquid-based electrolyte to a 100 mm × 100 mm sized dye-sensitized solar cell. J. Photochem. Photobio. A Chem. 164(1–3):129–135.

    CAS  Google Scholar 

  141. Oda T, Tanaka S, Hayase S. (2006) Analysis of dominant factors for increasing the efficiencies of dye-sensitized solar cells: Comparison between acetonitrile and ionic liquid based electrolytes. Jpn. J. Appl. Phys. Part I. 45(4A):2780–2787.

    CAS  Google Scholar 

  142. Ogomi Y, Kato T, Hayase S. (2006) Dye sensitized solar cells consisting of ionic liquid and solidification. J. Photopoly. Sci. Technol. 19(3):403–408.

    CAS  Google Scholar 

  143. Wang L, Fang SB, Lin Y, Zhou XW, Li MY. (2005) A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-linked gel electrolyte precursors. Chem. Commun. 45:5687–5689.

    Google Scholar 

  144. Yamanaka N, Kawano R, Kubo W, Kitamura T, Wada Y, Watanabe M, Yanagida S. (2005) Ionic liquid crystal as a hole transport layer of dye-sensitized solar cells. Chem. Commun. 6:740–742.

    Google Scholar 

  145. Saito Y, Azechi T, Kitamura T, Hasegawa Y, Wada Y, Yanagida S. (2004) Photo-sensitizing ruthenium complex for solid state dye sensitized solar cells in combination with conducting polymers as hole conductors. Coord. Chem. Rev. 248:1469–1478.

    CAS  Google Scholar 

  146. Haque SA, Handa S, Peter K, Palomares E, Thelakkat M, Durrant JR. (2005) Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function relationship. Angew. Chem. Int. Ed. 44:5740–5744.

    CAS  Google Scholar 

  147. Nogueira AF, Longo C, De Paoli M.A. (2004) Polymers in dye sensitized solar cells: Overview and perspectives. Coord. Chem. Rev. 248:1455–1468.

    CAS  Google Scholar 

  148. Tan XS, Zhai J, Wan MX, Jaing L, Zhu DB. (2003) Polyaniline as a hole transport material to prepare solid solar cells. Synth. Met. 137:1511–1512.

    CAS  Google Scholar 

  149. Senadeera GKR, Kitamura T, Wada Y, Yanagida S. (2004) Deposition of polyaniline via molecular self-assembly on TiO2 and its use as a sensitizer in solid-state solar cells. J. Photochem. Photobio. A Chem. 164(1–3):61–66.

    CAS  Google Scholar 

  150. Tan S, Zhai J, Xue B, Wan M, Meng Q, Li Y, Jiang L, Zhu D. (2004) Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells. Langmuir 20:2934–2937

    CAS  Google Scholar 

  151. Tan SX, Zhai J, Wan MX, Meng OB, Li YL, Jiang L, Zhu DB. (2004) Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells. J. Phys. Chem. B 108(48):18693–18697.

    CAS  Google Scholar 

  152. Murakoshi K, Kogure R, Wada Y, Yanagida S. (1997) Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer. Chem. Lett. 5:471–472.

    Google Scholar 

  153. Kitamura T, Maitani M, Matsuda M, Wada Y, Yanagida S. (2001) Improved solid-state dye solar cells with polypyrrole using carbon-based counter electrode. Chem. Lett. 10:1054–1055.

    Google Scholar 

  154. Lancelle-Beltran E, Prené P, Boscher C, Belleville P, Buvat P, Sanchez C. (2006) All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy conversion efficiency. Adv. Mater. 18:2579–2582.

    CAS  Google Scholar 

  155. Spiekermann S, Smestad G, Kowalik J, Tolbert LM, Graetzel M. (2001) Poly(4-undecyl-2,2-bithiophene) as hole conductor in solid state dye sensitized titanium dioxide solar cells. Synt. Met. 121:1603–1604.

    CAS  Google Scholar 

  156. Saito Y, Kitamura T, Wada Y, Yanagida S. (2002) Poly(3,4-ethylenedioxythiophene) as a hole conductor in solid state dye sensitized solar cells. Synth. Met. 131(1–3):185–187.

    CAS  Google Scholar 

  157. Saito Y, Fukuri N, Senadeera R, Kitamura T, Wada Y, Yanagida S. (2004) Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochem. Commun. 6:71–74.

    CAS  Google Scholar 

  158. Saito R, Dresselhaus G, Dresselhaus MS. (1998) Physical Properties of Carbon Nanotubes. Imperial college press, London.

    Google Scholar 

  159. Saito Y, Uemura S, Hamaguchi K. (1998) Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn. J. Appl. Phys. 37(3B):L346–L348.

    CAS  Google Scholar 

  160. Lira-Cantú M, Krebs FC, Yanagida S, Gómez -Romero P. (2008) Conjugated polymers as part of multifunctional organic–inorganic hybrid materials for photovoltaic applications. Mater. Res. Soc. Symp. Proc. 1007:249–257.

    Google Scholar 

  161. Wang Y, Yang K, Kim S-C, Nagarajan R, Samuelson LA, Kumar J. (2006) In situ polymerized carboxylated diacetylene as a hole conductor in solid-state dye-sensitized solar cell. Chem. Mat. 18:4215–4217.

    CAS  Google Scholar 

  162. Ikeda N, Miyasaka T. (2005) A solid-state dye-sensitized photovoltaic cell with poly(N-vinyl-carbazole) hole transporter mediated by alkali iodide. Chem. Comm. 1886–1888.

    Google Scholar 

  163. Ikeda N, Teshima K, Miyasaka T. (2006) Conductive polymer-carbon-imidazolium composite: a simple means for constructing solid-state dye-sensitized solar cells. Chem. Comm. 1733–1735.

    Google Scholar 

  164. Kruger J, Plass R, Graetzel M, Matthieu HJ. (2002) Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4′-dicarboxy-2,2′ bipyridine)-bis(isothiocyanato) ruthenium(II). Appl. Phys. Lett. 81(2):367–369.

    CAS  Google Scholar 

  165. Lancelle-Beltran E, Prené P, Boscher C, Belleville P, Buvat P, Lambert S, Guillet F, Boissiere C, Grosso D, Sanchez C. (2007) Nanostructured Hybrid Solar Cells Based on Self-Assembled Mesoporous Titania Thin Films. Chem. Mater. 18(26):6152–6156.

    Google Scholar 

  166. Brabec CJ, Hauch JA, Schilinsky P, Waldauf C. (2005) Production aspects of organic photovoltaics and their impact on the commercialization of devices. MRS Bull. 30:50–52.

    Google Scholar 

  167. Padinger F, Brabec CJ, Fromherz T, Hummelen JC, Sariciftci NS. (2000) Fabrication of large area photovoltaic devices containing various blends of polymer and fullerene derivatives by using the doctor blade technique. Opt. Elect. Rev. 8(4):280–283.

    CAS  Google Scholar 

  168. Winther-Jansen B, Krebs FC. (2006) High-conductivity large-area semi-transparent electrodes for polymer photovoltaics by silk screen printing and vapour-phase deposition. Sol. Energ. Mat. Sol. Cells 90:123–132.

    Google Scholar 

  169. Krebs F. Alternative PV. (2005) Alternative PV Large scale organic photovoltaics. Refocus 6(3):38–39.

    Google Scholar 

  170. Al-Ibrahim M, Roth HK, Zhokhavets U, Gobsch G, Sensfuss S. (2005) Flexible large-area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Sol. Energ. Mater. Sol. Cells 85:13–20.

    CAS  Google Scholar 

  171. Al-Ibrahim M, Klaus H, Sensfuss S. (2004) Efficient large-area polymer solar cells on flexible substrates. Appl. Phys. Lett. 85(9): 1481–1483.

    CAS  Google Scholar 

  172. Krebs FC, Alstrup J, Spanggaard H, Larsen K, Kold E. (2004) Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterphthalate. Sol. Energ. Mater. Sol. Cell 83:293–300.

    CAS  Google Scholar 

  173. http://www.konarkatech.com/

  174. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4:864–868.

    CAS  Google Scholar 

  175. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha CS, Ree M. (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat. Mater. 5:1897–203.

    Google Scholar 

  176. Österbacka R, An CP, Jiang XM, Vardeny ZV (2000) Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 4:839–842.

    Google Scholar 

  177. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveid-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuws DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685–688.

    CAS  Google Scholar 

  178. Gebeyehu D, Brabec CJ, Sariciftci NS, Vangeneugden D, Kiebooms R, Vanderzande D, Kienberger F, Schindler H. (2002) Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials. Synth. Met. 125:279–287

    CAS  Google Scholar 

  179. Gebeyehu D, Brabec CJ, Sariciftci NS. (2002) Solid-state organic–inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes. Thin Solid Films 403–404:271–274.

    Google Scholar 

  180. Baibarac M, Lira-Cantú M, Oró Solé J, Casañ-Pastor N, Gómez -Romero P. (2006) Electrochemically functionalized carbon nanotubes and their application to rechargeable Li batteries. Small 2(8–9):1075–1082.

    CAS  Google Scholar 

  181. Dell RM, Rand DAJ. (2001) Energy storage – a key technology for global energy sustainability. J. Power Sources 100(1):2–17.

    CAS  Google Scholar 

  182. Fukuri N, Saito Y, Kubo W, Senadeera GKR, Kitamura T, Wada Y, Yanagida S. (2004) Performance improvement of solid-state dye-sensitized solar cells fabricated using poly(3,4-ethylenedioxythiophene) and amphiphilic sensitizing dye. J. Electrochem. Soc. 151(10):A1745–A1748.

    CAS  Google Scholar 

  183. Gebeyehu D, Brabec CJ, Padinger F, Fromherz T, Spiekermann S, Valchopoulos N, Kienberger F, Schindler H, Sariciftci NS. (2001) Solid state dye-sensitized TiO2 solar cells with poly(3-octylthiophene) as hole transport layer. Synth. Met. 121:1549–1550.

    CAS  Google Scholar 

  184. Gómez-Romero P, Chojak M, Cuentas-Gallegos K, Asensio JA, Kulesza PJ, Casañ-Pastor N, Lira-Cantú M. (2003) Hybrid organic-inorganic nanocomposite materials for application in solid state electrochemical supercapacitors. Electrochem. Commun. 5:149.

    Google Scholar 

  185. Arango AC, Carter SA, Brock PJ. (1999) Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles. Appl. Phys. Lett. 74:1698–1700.

    CAS  Google Scholar 

  186. Kim H, Popov BN. (2003) Study and characterization of MnO2-based mixed oxides as supercapacitors. J. Electrochem. Soc. 150:D56–D62.

    CAS  Google Scholar 

Download references

Acknowledgments

M.L-C. would like to thank Dr. Frederik C. Krebs (Denmark) and Dr. Shozo Yanagida (Japan) for their support during the visit to their laboratories. She is also grateful to AGAUR for the support to visit RISO National Laboratory (Denmark, 2004), to the Canon Foundation in Europe for the visiting grant to the Centre for Advanced Science and Innovation (Japan, 2006), to the Spanish Ministry of Science and Technology (MAT 2005-07683-C02-01 and ENE2008-04373/ALT) and to the “Ramon y Cajal” program (Spain) for the support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lira-Cantú*, M., Gómez-Romero, P. (2009). Next-Generation Hybrid Nanocomposite Materials Based on Conducting Organic Polymers: Energy Storage and Conversion Devices. In: Merhari, L. (eds) Hybrid Nanocomposites for Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30428-1_7

Download citation

Publish with us

Policies and ethics