Skip to main content

Development of Hybrid Nanocomposites for Electronic Applications

  • Chapter
  • First Online:
Hybrid Nanocomposites for Nanotechnology

Abstract

Hybrid inorganic–organic nanocomposite materials with their widely varying electrical and mechanical properties offer promising applications in many areas of the electronic industry and have been traditionally employed as insulators and dielectrics. The development of new materials has broadened their utilization into areas where their semi-conducting and conducting properties have encouraged use in many novel applications. In this chapter we have reviewed on the material aspects of nanocomposites used in the following electronic applications: integrated circuits, embedded capacitors, transistors, lithium ion batteries, light emitting diodes, information storage, and briefly about liquid crystal, flat panel displays and ultra large scale integrated (ULSI) devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baibarac M, Gomez-Romero P (2006) Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications. Journal of Nanoscience and Nanotechnology 6:289–302

    CAS  Google Scholar 

  2. Green MA (2006) Synthesizing semiconducting material using silicon – a nanostructured composite of silicon quantum dots in an amorphous matrix. In: Bandyopadhyay S, Berndt CC, Rizkalla S, Gowripalan N, Matisons J, Zeng Q (eds) ACUN-5 International Composites Conference: Developments in Composites: Advanced, Infrastructural, Natural and Nanocomposites Sydney, pp 513–518

    Google Scholar 

  3. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. Journal of Materials Chemistry 15:3559–3592

    CAS  Google Scholar 

  4. Amato G, Borini S, Rossi AM, Boarino L, Rocchia M (2005) Si/SiO2 nanocomposite by CVD infiltration of porous SiO2. Physica Status Solidi A-Applications and Materials Science 202:1529–1532

    CAS  Google Scholar 

  5. Baibarac M, Baltog I, Lefrant S, Mevellec JY, Chauvet O (2003) Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes. Chemistry of Materials 15:4149–4156

    CAS  Google Scholar 

  6. Besenhard JO, Hess M, Komenda P (1990) Dimensionally stable Li-alloy electrodes for secondary batteries. Solid State Ionics 40–41:525–529

    Google Scholar 

  7. Bhattacharya A, Ganguly KM, De A, Sarkar S (1996) A new conducting nanocomposite – PPy-zirconium(IV) oxide. Materials Research Bulletin 31:527–530

    CAS  Google Scholar 

  8. Bhattacharya SK, Tummala RR (2001) Integral passives for next generation of electronic packaging: application of epoxy/ceramic nanocomposites as integral capacitors. Microelectronics Journal 32:11–19

    CAS  Google Scholar 

  9. Caseri WR (2006) Nanocomposites of polymers and inorganic particles: preparation, structure and properties. Materials Science and Technology 22:807–817

    CAS  Google Scholar 

  10. Siwick BJ, Kalinina O, Kumacheva E, Dwayne Miller RJ, Noolandi J (2001) Polymeric nanostructured material for high-density three-dimensional optical memory storage. Journal of Applied Physics 90:5328–5334

    Google Scholar 

  11. Lockwood DJ, Lu ZH, Baribeau JM (1996) Quantum confined luminescence in Si/SiO2 superlattices. Physical Review Letters 76:539–541

    CAS  Google Scholar 

  12. (a) Kim DS, Lee T, Geckeler KE (2006) Hole-doped single-walled carbon nanotubes: ­ornamenting with gold nanoparticles in water. Angewandte Chemie (International ed. in English) 45: 104–107

    CAS  Google Scholar 

  13. (b) Mahima S, Chaki NK, Sharma J, Kakade BA, Pasricha R, Rao AM, Vijayamohanan K (2006) Electrochemical organization of monolayer protected gold nanoclusters on single-walled carbon nanotubes: Significantly enhanced double layer capacitance. Journal of Nanoscience and Nanotechnology 6:1387–1391

    CAS  Google Scholar 

  14. Merhari L, Belorgeot C, Moliton JP (1990) Etch rate modeling for ion-irradiated nitrocellulose. Applied Physics Letters 57:2785–2787

    CAS  Google Scholar 

  15. Merhari L, Moliton JP, Belorgeot C (1990) Fourier-transform infrared study of ion irradiated nitrocellulose. Journal of Applied Physics 68:4837–4845

    CAS  Google Scholar 

  16. Merhari L, Lehue C, Belorgeot C, Bahna Z (1991) Ion-implantation profile modeling of nitrocellulose coated substrates. Applied Physics Letters 59:2856–2858

    CAS  Google Scholar 

  17. Merhari L, Belorgeot C, Moliton JP (1991) Ion irradiation induced effects in polyamidoimide. Journal of Vacuum Science & Technology B 9:2511–2522

    CAS  Google Scholar 

  18. Merhari L, Belorgeot C, Quintard P (1994) Helium ion-irradiated polyamidoimide films – a ft-ir and raman follow-up. Journal of Materials Science Letters 13:286–288

    CAS  Google Scholar 

  19. Merhari L, Gonsalves KE, Hu Y, He W, Huang WS, Angelopoulos M, Bruenger WH, Dzionk C, Torkler M (2002) Nanocomposite resist systems for next generation lithography. Microelectronic Engineering 63:391–403

    CAS  Google Scholar 

  20. Ogitani S, Bidstrup-Allen SA, Kohl PA (2000) Factors influencing the permittivity of polymer/ceramic composites for embedded capacitors. IEEE Transactions on Advanced Packaging 23:313–322

    CAS  Google Scholar 

  21. Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Advanced Materials 11:1281–1285

    CAS  Google Scholar 

  22. Bakueva L, Musikhin S, Sargent EH, Schulz S (2003) Fabrication and investigation of nanocomposites of conducting polymers and GaSb nanocrystals. Surface Science 532:828–831

    Google Scholar 

  23. http://www.intel.com/technology/silicon/65nm_technology.htm.

  24. Amos SW, James MR (1999) Principles of Transistor Circuits. Butterworth-Heinemann, Oxford

    Google Scholar 

  25. Horowitz, Paul, Hill (1989) The Art of Electronics. Cambridge University Press, Winfield

    Google Scholar 

  26. Warnes L (1998) Analogue and Digital Electronics. Macmillan, New York

    Google Scholar 

  27. Brick CM, Ouchi Y, Chujo Y, Laine RM (2005) Robust polyaromatic octasilsesquioxanes from polybromophenylsilsesquioxanes, BrxOPS, via Suzuki coupling. Macromolecules 38:4661–4665

    CAS  Google Scholar 

  28. Kumar S, Pimparkar N, Murthy JY, Alam MA (2006) Theory of transfer characteristics of nanotube network transistors. Applied Physics Letters 88:123505 (1–3)

    Google Scholar 

  29. Kumar TP, Ramesh R, Lin YY, Fey GTK (2004) Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochemistry Communications 6:520–525

    CAS  Google Scholar 

  30. Philip B, Xie JI, Abraham JK, Varadan VK (2004) A new synthetic route to enhance polyaniline assembly on carbon nanotubes in tubular composites. Smart Materials & Structures 13:N105–N108

    CAS  Google Scholar 

  31. Torsi L, Cioffi N, Di Franco C, Sabbatini L, Zambonin PG, Bleve-Zacheo T (2001) Organic thin film transistors: from active materials to novel applications. Solid-State Electronics 45:1479–1485

    CAS  Google Scholar 

  32. Yao KJ, Song M, Hourston DJ, Luo DZ (2002) Polymer/layered clay nanocomposites: 2 polyurethane nanocomposites. Polymer 43:1017–1020

    CAS  Google Scholar 

  33. Yao ZL, Braidy N, Botton GA, Adronov A (2003) Polymerization from the surface of single-walled carbon nanotubes – preparation and characterization of nanocomposites. Journal of the American Chemical Society 125:16015–16024

    CAS  Google Scholar 

  34. Ree M, Goh WH, Kim Y (1995) Thin-films of organic polymer composites with inorganic aerogels as dielectric materials – polymer-chain orientation and properties. Polymer Bulletin 35:215–222

    CAS  Google Scholar 

  35. Ree M, Shin TJ, Lee SW (2001) Fully rod-like aromatic polyimides: Structure, properties, and chemical modifications. Korea Polymer Journal 9:1–19

    CAS  Google Scholar 

  36. Ree MH, Yoon JW, Heo KY (2006) Imprinting well-controlled closed-nanopores in spin-on polymeric dielectric thin films. Journal of Materials Chemistry 16:685–697

    CAS  Google Scholar 

  37. Kang S, Leblebici Y (2002) CMOS Digital Integrated Circuits Analysis & Design. McGraw-Hill, New Tork

    Google Scholar 

  38. Mead C, Conway L (1980) Introduction to VLSI systems. Addison Wesley, Reading, MA

    Google Scholar 

  39. Hodges DA, Jackson HG, Saleh R (2003) Analysis and Design of Digital Integrated Circuits. McGraw-Hill, New York

    Google Scholar 

  40. Rbaey JM, Chandrakasan A, Nikolic B (1996) Digital Integrated Circuits. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  41. Huelsman LP (1972) Basic Circuit Theory with Digital Computations. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  42. Maini AK (1998) Electronic Projects for Beginners. Pustak Mahal, India

    Google Scholar 

  43. Zorpette G (2005) Super charged: a tiny South Korean company is out to make capacitors powerful enough to propel the next generation of hybrid-electric cars. IEEE Spectrum 42:32 –37

    Google Scholar 

  44. Carpick RW, Sasaki DY, Marcus MS, Eriksson MA, Burns AR (2004) Polydiacetylene films: a review of recent investigations into chromogenic transitions and nanomechanical properties. Journal of Physics-Condensed Matter 16:R679–R697

    CAS  Google Scholar 

  45. Murugaraj P, Mainwaring D, Mora-Huertas N (2006) Thermistor behaviour in a semiconducting polymer-nanoparticle composite film. Journal of Physics D-Applied Physics 39:2072–2078

    CAS  Google Scholar 

  46. Chen WX, Lee JY, Liu ZL (2002) Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites. Electrochemistry Communications 4:260–265

    CAS  Google Scholar 

  47. batteryuniversity.com.

  48. http://en.wikipedia.org.

  49. Dang ZM, Wang HY, Zhang YH, Qi JQ (2005) Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3. Macromolecular Rapid Communications 26:1185–1189

    CAS  Google Scholar 

  50. Das D, Chakravorty D (2001) Alternating current conductivity of the interfacial phase in copper oxide-silica gel nanocomposites. Journal of Materials Research 16:1047–1051

    CAS  Google Scholar 

  51. Gonon P, Boudefel A (2006) Electrical properties of epoxy/silver nanocomposites. Journal of Applied Physics 99

    Google Scholar 

  52. Li L, Takahashi A, Hao JJ, Kikuchi R, Hayakawa T, Tsurumi TA, Kakimoto MA (2005) Novel polymer-ceramic nanocomposite based on new concepts for embedded capacitor application (I). IEEE Transactions on Components and Packaging Technologies 28:754–759

    CAS  Google Scholar 

  53. Misman O, Bhattacharya SK, Erbil A, Tummala RR (2000) PWB compatible high value integral capacitors by MOCVD. Journal of Materials Science-Materials in Electronics 11:657–660

    CAS  Google Scholar 

  54. Pothukuchi S, Li Y, Wong CP (2004) Development of a novel polymer-metal nanocomposite obtained through the route of in situ reduction for integral capacitor application. Journal of Applied Polymer Science 93:1531–1538

    CAS  Google Scholar 

  55. Rao Y, Ogitani S, Kohl P, Wong CP (2002) Novel polymer-ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application. Journal of Applied Polymer Science 83:1084–1090

    CAS  Google Scholar 

  56. Jillek W, Yung WKC (2005) Embedded components in printed circuit boards: a processing technology review. International Journal of Advanced Manufacturing Technology 25:350–360

    Google Scholar 

  57. Tummala RR, Rymaszewski EJ, Klopfenstein AG (1999) Microelectronics Packaging Handbook. Kluwer, Norwell

    Google Scholar 

  58. Clearfield HM, Wijeyesekera S, Logan EA, Luu A, Gieser D, Lin CM, Jing J (1998) Integrated passive devices using Al/BCB thin films. In Third Advanced Technology on Workshop Integrated Passives Technol, Denver

    Google Scholar 

  59. Cho YH, Park JM, Park YH (2004) Preparation and properties of polyimides having highly flexible linkages and their nanocomposites with organoclays. Macromolecular Research 12:38–45

    CAS  Google Scholar 

  60. Ramesh S, Shutzberg BA, Huang C, Gao J, Giannelis EP (2003) Dielectric nanocomposites for integral thin film capacitors: Materials design, fabrication, and integration issues. IEEE Transactions on Advanced Packaging 26:17–24

    CAS  Google Scholar 

  61. Rao Y, Wong CP (2004) Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications. Journal of Applied Polymer Science 92:2228–2231

    CAS  Google Scholar 

  62. Godovski, Yu D (1995) Advances in Polymer Science 119:79–122

    CAS  Google Scholar 

  63. www.3m.com/us/electronics_mfg/microelectronic_packaging/materials.

  64. Rao Y, Yue J, Wong CP (2001) High K polymer-ceramic nano-composite development, characterization and modeling for embedded capacitor RF application. Proceedings of the Electronic Components Technology Conference, 1408–1419

    Google Scholar 

  65. Kuo DH, Chang CC, Su TY, Wang WK, Lin BY (2004) Dielectric properties of three ceramic/epoxy composites. Materials Chemistry and Physics 85:201–206

    CAS  Google Scholar 

  66. Bidstrup-Allen SA, Kohl PA (2002) IEEE Transactions on Advanced Packaging 23:313

    Google Scholar 

  67. Vrejoiu I, Pedarnig JD, Dinescu M, Bauer-Gogonea S, Bauerle D (2002) Flexible ceramic-polymer composite films with temperature-insensitive and tunable dielectric permittivity. Applied Physics A-Materials Science & Processing 74:407–409

    CAS  Google Scholar 

  68. Xu J, Bhattacharya S, Moon K, Lu J, Englert B, Wong CP, Pramanik P (2006) Large Area Processable High k Nanocomposite-Based Embedded Capacitors. IEEE Electronic Components and Technology Proceedings 56:1520–1532

    Google Scholar 

  69. Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM (2000) High-dielectric-constant ceramic-powder polymer composites. Applied Physics Letters 76:3804–3806

    CAS  Google Scholar 

  70. Chiteme C, McLachlan DS (2003) ac and dc conductivity, magnetoresistance, and scaling in cellular percolation systems. Physical Review B 67(2), pp. 024206.1–024206.18

    Google Scholar 

  71. Desurvire E (1994) Erbium Doped Fiber Amplifiers. Wiley, New York

    Google Scholar 

  72. Kozeki M (2002) The condensor film and its property. Proceeding of Eighth JIEP Microfabrication Research Report, 31

    Google Scholar 

  73. NEMI (1998) National Electronics Manufacturing Technology Roadmap. National Electronics Manufacturing Initiative, Herndon

    Google Scholar 

  74. Chahal P, Tummala R, Allen M, Swaminathan M (1999) IEEE Transactions on Components, Packaging and Manufacturing Technology B21:184

    Google Scholar 

  75. Rao Y, Wong CP (2002) Proceedings of the Eight International Symposium on Advanced Packaging Materials, 243

    Google Scholar 

  76. Bergman DJ, Stroud D (1992) Physical properties of macroscopically inhomogenous media. Solid State Physics 46:147

    CAS  Google Scholar 

  77. Clerc JP, Giraud G, Laugier JM, Luck JM (1990) Advances in Physics 39:191

    CAS  Google Scholar 

  78. Choi SH, Kim JS, Yoon YS (2004) Fabrication and characterization of SnO2-RuO2 composite anode thin film for lithium ion batteries. Electrochimica Acta 50:547–552

    CAS  Google Scholar 

  79. Pecharroman C, Esteban-Betegon F, Bartolome JF, Lopez-Esteban S, Moya JS (2001) New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant (epsilon(r) approximate to 80,000). Advanced Materials 13:1541–1544

    CAS  Google Scholar 

  80. Dang ZM, Shen Y, Nan CW (2002) Dielectric behavior of three-phase percolative Ni–BaTiO3/polyvinylidene fluoride composites. Applied Physics Letters 81:4814–4816

    CAS  Google Scholar 

  81. Chou YC, Jaw TS (1988) Divergence of dielectric-constant near the percolation-threshold. Solid State Communications 67:753–756

    Google Scholar 

  82. Chung KT, Sabo A, Pica AP (1982) Electrical permittivity and conductivity of carbon-black polyvinyl-chloride composites. Journal of Applied Physics 53:6867–6879

    CAS  Google Scholar 

  83. Grannan DM, Garland JC, Tanner DB (1981) Critical-behavior of the dielectric-constant of a random composite near the percolation-threshold. Physical Review Letters 46:375–378

    CAS  Google Scholar 

  84. Flandin L, Prasse T, Schueler R, Schulte K, Bauhofer W, Cavaille JY (1999) Anomalous percolation transition in carbon-black-epoxy composite materials. Physical Review B 59:14349–14355

    CAS  Google Scholar 

  85. McLachlan DS, Heaney MB (1999) Complex ac conductivity of a carbon black composite as a function of frequency, composition, and temperature. Physical Review B 60:12746–12751

    CAS  Google Scholar 

  86. Bhattacharyya SK, Basu S, DE SK (1975) Composites Part A-Applied Science and Manufacturing 9:177

    Google Scholar 

  87. Luechinger N, Wendelin JS, Bandyopadhyay S, Heness G (2006) Processing, Structure and Electrical Properties of C/Co-Polymer Nanocomposites. Internal Report ETH Zurich/UNSW/UTS

    Google Scholar 

  88. Cho SD, Lee JY, Hyun JG, Paik KW (2004) Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications. Materials Science and Engineering B-Solid State Materials for Advanced Technology 110:233–239

    Google Scholar 

  89. Dong LJ, Xiong CX, Chen J, Nan CW (2004) Dielectric behavior of BaTiO3/PVDF nanocomposites in-situ synthesized by the sol-gel method. Journal of Wuhan University of Technology-Materials Science Edition 19:9–11

    CAS  Google Scholar 

  90. Wang J, Guo ZP, Zhong S, Liu HK, Dou SX (2003) Lead-coated glass fibre mesh grids for lead-acid batteries. Journal of Applied Electrochemistry 33:1057–1061

    CAS  Google Scholar 

  91. Wang J, Zhong S, Liu HK, Dou SX (2003) Beneficial effects of red lead on non-cured plates for lead-acid batteries. Journal of Power Sources 113:371–375

    CAS  Google Scholar 

  92. Chen J, Bradhurst DH, Dou SX, Liu HK (1998) Electrode properties of Mg2Ni alloy ball-milled with cobalt powder. Electrochimica Acta 44:353–355

    CAS  Google Scholar 

  93. Luan B, Liu HK, Dou SX (1997) On the elemental substitutions of titanium-based hydrogen-storage alloy electrodes for rechargeable Ni-MH batteries. Journal of Materials Science 32:2629–2635

    CAS  Google Scholar 

  94. Sadoway DR, Mayes AM (2002) Portable power: advanced rechargeable lithium batteries. Mrs Bulletin 27:590–592

    CAS  Google Scholar 

  95. Liu HK, Wang GX, Guo ZP, Wang JZ, Konstantinov K (2006) Nanomaterials for lithium-ion rechargeable batteries. Journal of Nanoscience and Nanotechnology 6:1–15

    Google Scholar 

  96. Ng SH, Wang J, Konstantinov K, Wexler D, Chen J, Liu HK (2006) Spray pyrolyzed PbO–carbon nanocomposites as anode for lithium-ion batteries. Journal of the Electrochemical Society 153:A787–A793

    CAS  Google Scholar 

  97. Selvan RK, Kalaiselvi N, Augustin CO, Doh CH, Sanjeeviraja C (2006) CuFe2O4/SnO2 nanocomposites as anodes for Li-ion batteries. Journal of Power Sources 157:522–527

    Google Scholar 

  98. Huggins RA (2002) Alternative materials for negative electrodes in lithium systems. Solid State Ionics 152:61–68

    Google Scholar 

  99. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chemical Reviews 104:4245–4269

    CAS  Google Scholar 

  100. Scrosati B (1992) Lithium rocking chair batteries – an old concept. Journal of the Electrochemical Society 139:2776–2781

    CAS  Google Scholar 

  101. Besenhard JO, Wagner MW, Winter M, Jannakoudakis AD, Jannakoudakis PD, Theodoridou E (1993) Inorganic film-forming electrolyte additives improving the cycling behavior of metallic lithium electrodes and the self-discharge of carbon lithium electrodes. Journal of Power Sources 44:413–420

    CAS  Google Scholar 

  102. Imanishi N, Kashiwagi H, Ichikawa T, Takeda Y, Yamamoto O, Inagaki M (1993) Charge-discharge characteristics of mesophase-pitch-based carbon-fibers for lithium cells. Journal of the Electrochemical Society 140:315–320

    CAS  Google Scholar 

  103. Ahn JH, Wang GX, Yao J, Liu HK, Dou SX (2003) Tin-based composite materials as anode materials for Li-ion batteries. Journal of Power Sources 119:45–49

    Google Scholar 

  104. Hibino M, Abe K, Mochizuki M, Miyayama M (2004) Amorphous titanium oxide electrode for high-rate discharge and charge. Journal of Power Sources 126:139–143

    CAS  Google Scholar 

  105. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M (2000) Nature 407:496–499

    CAS  Google Scholar 

  106. Sides CR, Martin CR (2005) Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Advanced Materials 17:125–128

    CAS  Google Scholar 

  107. Cheng XQ, Shi PF (2005) Electroless Cu-plated Ni3Sn4 alloy used as anode material for lithium ion battery. Journal of Alloys and Compounds 391:241–244

    CAS  Google Scholar 

  108. Kim YU, Lee SI, Lee CK, Sohn HJ (2005) Enhancement of capacity and cycle-life of Sn+delta P3 (0 <= delta <= 1) anode for lithium secondary batteries. Journal of Power Sources 141:163–166

    CAS  Google Scholar 

  109. Xie J, Zhao XB, Cao GS, Zhong YD, Zhao MJ, Tu JP (2005) Solvothermal synthesis of nanosized CoSb2 alloy anode for Li-ion batteries. Electrochimica Acta 50:1903–1907

    CAS  Google Scholar 

  110. Reddy MV, Wannek C, Pecquenard B, Vinatier P, Levasseur A (2003) LiNiVO4-promising thin films for use as anode material in microbatteries. Journal of Power Sources 119:101–105

    Google Scholar 

  111. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276:1395–1397

    CAS  Google Scholar 

  112. Nishijima M, Takeda Y, Imanishi N, Yamamota O (1994) Li deintercalation and structural change in the lithium transition metal nitride Li3FeN2. Journal of Solid State Chemistry 113:205–210

    CAS  Google Scholar 

  113. Kishore M, Varadaraju UV, Raveau B (2004) Electrochemical performance of LiMSnO (M = Fe, In) phases with ramsdellite structure as anodes for lithium batteries. Journal of Solid State Chemistry 177:3981–3986

    Google Scholar 

  114. Kalaiselvi N, Doh CH, Park CW, Moon SI, Yun MS (2004) A novel approach to exploit LiFePO4 compound as an ambient temperature high capacity anode material for rechargeable lithium batteries. Electrochemistry Communications 6:1110–1113

    CAS  Google Scholar 

  115. Son JT (2004) Novel electrode material for Li ion battery based on polycrystalline LiNbO3. Electrochemistry Communications 6:990–994

    CAS  Google Scholar 

  116. Chu YQ, Fu ZW, Qin QZ (2004) Cobalt ferrite thin films as anode material for lithium ion batteries. Electrochimica Acta 49:4915–4921

    CAS  Google Scholar 

  117. Alcantara R, Jaraba M, Lavela P, Tirado JL, Jumas JC, Olivier-Fourcade J (2003) Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4. Electrochemistry Communications 5:16–21

    CAS  Google Scholar 

  118. NuLi YN, Qin QZ (2005) Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries. Journal of Power Sources 142:292–297

    CAS  Google Scholar 

  119. NuLi YN, Chu YQ, Qin QZ (2004) Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries. Journal of the Electrochemical Society 151:A1077–A1083

    CAS  Google Scholar 

  120. Sharma N, Shaju KM, Rao GVS, Chowdari BVR (2003) Iron-tin oxides with CaFe2O4 structure as anodes for Li-ion batteries. Journal of Power Sources 124:204–212

    CAS  Google Scholar 

  121. Idota Y, Mishima M, Miyaki Y, Kubota T, Miyasaki T (1994) Canadian Patent Application 2:134

    Google Scholar 

  122. Idota Y, Mishima M (1995) Canadian Patent Application 2:143

    Google Scholar 

  123. Brousse T, Retoux R, Herterich U, Schleich DM (1998) Thin-film crystalline SnO2-lithium electrodes. Journal of the Electrochemical Society 145:1–4

    CAS  Google Scholar 

  124. Courtney IA, McKinnon WR, Dahn JR (1999) On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. Journal of the Electrochemical Society 146:59–68

    CAS  Google Scholar 

  125. Goward GR, Leroux F, Power WP, Ouvrard G, Dmowski W, Egami T, Nazar LF (1999) On the nature of Li insertion in tin composite oxide glasses. Electrochemical and Solid State Letters 2:367–370

    CAS  Google Scholar 

  126. Liu W, Huang X, Wang Z, Li H, Chen L (1998) J. Electrochem. Soc. 145:59

    CAS  Google Scholar 

  127. Wolfenstine J, Sakamoto J, Huang CK (1998) Tin oxide tin composite anodes for use in Li-ion batteries. Journal of Power Sources 75:181–182

    CAS  Google Scholar 

  128. Courtney IA, Dahn JR (1997) Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. Journal of the Electrochemical Society 144:2045–2052

    CAS  Google Scholar 

  129. Cruz M, Hernan L, Morales J, Sanchez L (2002) Spray pyrolysis as a method for preparing PbO coatings amenable to use in lead-acid batteries. Journal of Power Sources 108:35–40

    CAS  Google Scholar 

  130. Martos M, Morales J, Sanchez L, Ayouchi R, Leinen D, Martin F, Barrado JRR (2001) Electrochemical properties of lead oxide films obtained by spray pyrolysis as negative electrodes for lithium secondary batteries. Electrochimica Acta 46:2939–2948

    CAS  Google Scholar 

  131. Yang J, Winter M, Besenhard JO (1996) Small particle size multiphase Li-alloy anodes for lithium-ion-batteries. Solid State Ionics 90:281–287

    CAS  Google Scholar 

  132. Huggins RA (1999) Lithium alloy negative electrodes. Journal of Power Sources 82:13–19

    Google Scholar 

  133. Mao O, Turner RL, Courtney IA, Fredericksen BD, Buckett MI, Krause LJ, Dahn JR (1999) Active/inactive nanocomposites as anodes for Li-ion batteries. Electrochemical and Solid State Letters 2:3–5

    CAS  Google Scholar 

  134. Yang J, Wachtler M, Winter M, Besenhard JO (1999) Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries. Electrochemical and Solid State Letters 2:161–163

    CAS  Google Scholar 

  135. Li NC, Martin CR (2001) A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol–gel template synthesis. Journal of the Electrochemical Society 148:A164–A170

    CAS  Google Scholar 

  136. Li NC, Martin CR, Scrosati B (2000) A high-rate, high-capacity, nanostructured tin oxide electrode. Electrochemical and Solid State Letters 3:316–318

    CAS  Google Scholar 

  137. Whitehead AH, Elliott JM, Owen JR (1999) Nanostructured tin for use as a negative electrode material in Li-ion batteries. Journal of Power Sources 82:33–38

    Google Scholar 

  138. Yang J, Takeda Y, Imanishi N, Yamamoto O (1999) Ultrafine Sn and SnSb0.14 powders for lithium storage matrices in lithium-ion batteries. Journal of the Electrochemical Society 146:4009–4013

    CAS  Google Scholar 

  139. Yang J, Takeda Y, Imanishi N, Ichikawa T, Yamamoto O (1999) Study of the cycling performance of finely dispersed lithium alloy composite electrodes under high Li-utilization. Journal of Power Sources 79:220–224

    CAS  Google Scholar 

  140. Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349

    CAS  Google Scholar 

  141. Dahn JR, Zheng T, Liu YH, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590–593

    CAS  Google Scholar 

  142. Gao B, Kleinhammes A, Tang XP, Bower C, Fleming L, Wu Y, Zhou O (1999) Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chemical Physics Letters 307:153–157

    CAS  Google Scholar 

  143. Guo ZP, Zhao ZW, Liu HK, Dou SX (2005) Electrochemical lithiation and de-lithiation of MWNT-Sn/SnNi nanocomposites. Carbon 43:1392–1399

    CAS  Google Scholar 

  144. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    CAS  Google Scholar 

  145. Wang GX, Yao J, Liu HK (2004) Characterization of nanocrystalline Si-MCMB composite anode materials. Electrochemical and Solid State Letters 7:A250–A253

    CAS  Google Scholar 

  146. Badway F, Pereira N, Cosandey F, Amatucci GG (2003) Carbon-metal fluoride nanocomposites – structure and electrochemistry of FeF3:C. Journal of the Electrochemical Society 150:A1209–A1218

    CAS  Google Scholar 

  147. Wang Y, Lee JY (2005) Microwave-assisted synthesis of SnO2-graphite nanocomposites for Li-ion battery applications. Journal of Power Sources 144:220–225

    CAS  Google Scholar 

  148. Fleischauer MD, Topple JM, Dahna JR (2005) Combinatorial investigations of Si–M (M = Cr plus Ni, Fe, Mn) thin film negative electrode materials. Electrochemical and Solid State Letters 8:A137–A140

    CAS  Google Scholar 

  149. Li H, Huang XJ, Chen LQ, Wu ZG, Liang Y (1999) Electrochemical and Solid-State Letters 2:547

    CAS  Google Scholar 

  150. http://www.physorg.com/news3061.html.

  151. Nalimova VA, Sklovsky DE, Bondarenko GN, Alvergnat-Gaucher H, Bonnamy S, Beguin F (1997) Lithium interaction with carbon nanotubes. Synthetic Metals 88:89–93

    CAS  Google Scholar 

  152. Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE (2000) Solid-state electrochemistry of the Li single wall carbon nanotube system. Journal of the Electrochemical Society 147:2845–2852

    CAS  Google Scholar 

  153. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon 37:61–69

    CAS  Google Scholar 

  154. Kim I, Kumta PN, Blomgren GE (2000) Si/TiN nanocomposites – novel anode materials for Li-ion batteries. Electrochemical and Solid State Letters 3:493–496

    CAS  Google Scholar 

  155. Lee KT, Jung YS, Oh SM (2003) Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. Journal of the American Chemical Society 125:5652–5653

    CAS  Google Scholar 

  156. Besenhard JO (1999) Handbook of Battery Materials. Wiley VCH, Weinheim

    Google Scholar 

  157. Fu LJ, Liu H, Zhang HP, Li C, Zhang T, Wu YP, Holze R, Wu HQ (2006) Synthesis and electrochemical performance of novel core/shell structured nanocomposites. Electrochemistry Communications 8:1–4

    CAS  Google Scholar 

  158. Wang GX, Ahn JH, Yao J, Bewlay S, Liu HK (2004) Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochemistry Communications 6:689–692

    CAS  Google Scholar 

  159. Wang GX, Chen Y, Yang L, Yao J, Needham S, Liu HK, Ahn JH (2005) Journal Power Sources 146:487

    CAS  Google Scholar 

  160. Martos M, Morales J, Sanchez L (2003) Lead-based systems as suitable anode materials for Li-ion batteries. Electrochimica Acta 48:615–621

    CAS  Google Scholar 

  161. Yuan L, Konstantinov K, Wang GX, Liu HK, Dou SX (2005) Nano-structured SnO2-carbon composites obtained by in situ spray pyrolysis method as anodes in lithium batteries. Journal of Power Sources 146:180–184

    CAS  Google Scholar 

  162. Bewlay SL, Konstantinov K, Wang GX, Dou SX, Liu HK (2004) Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Materials Letters 58:1788–1791

    CAS  Google Scholar 

  163. Yoshio M, Wang HY, Fukuda K, Umeno T, Dimov N, Ogumi Z (2002) Carbon-coated Si as a lithium-ion battery anode material. Journal of the Electrochemical Society 149:A1598–A1603

    CAS  Google Scholar 

  164. Kim Y, Goh WH, Chang T, Ha CS, Ree M (2004) Optical and dielectric anisotropy in polyimide nanocomposite films prepared from soluble poly(amic diethyl ester) precursors. Advanced Engineering Materials 6:39–43

    CAS  Google Scholar 

  165. Yu J, Ree M, Shin TJ, Park YH, Cai W, Zhou D, Lee KW (2000) Adhesion of poly (4,4¢-oxydiphenylene pyromellitimide) to copper metal using a polymeric primer: Effects of miscibility and polyimide precursor origin. Macromolecular Chemistry and Physics 201:491–499

    CAS  Google Scholar 

  166. Wu YP, Dai XB, Ma JQ, Chen YJ (2004) Lithium Ion Batteries – Practice and Applications. Chemical Industry Press, Beijing

    Google Scholar 

  167. Wilson AM, Dahn JR (1995) Lithium Insertion in Carbons Containing Nanodispersed Silicon. Journal of the Electrochemical Society 142:326–332

    CAS  Google Scholar 

  168. Gratz J, Ahn CC, Yazami R, Fultz B, A194. (1999) Electrochemical Solid-state lett ers 6:A 194

    Google Scholar 

  169. Ohara S, Suzuki J, Sekine K, Takamura T (2003) Li insertion/extraction reaction at a Si film evaporated on a Ni foil. Journal of Power Sources 119:591–596

    Google Scholar 

  170. Niu J, Lee JY (2002) Electrochemical Solid-State Letters 5:A107

    CAS  Google Scholar 

  171. Wang CS, Wu GT, Zhang XB, Qi ZF, Li WZ (1998) Lithium insertion in carbon-silicon composite materials produced by mechanical milling. Journal of the Electrochemical Society 145:2751–2758

    CAS  Google Scholar 

  172. Menard E, Lee KJ, Khang DY, Nuzzo RG, Rogers JA (2004) A printable form of silicon for high performance thin film transistors on plastic substrates. Applied Physics Letters 84:5398–5400

    CAS  Google Scholar 

  173. Chan VZH, Hoffman J, Lee VY, Iatrou H, Avgeropoulos A, Hadjichristidis N, Miller RD, Thomas EL (1999) Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors. Science 286:1716–1719

    CAS  Google Scholar 

  174. Maex K, Baklanov MR, Shamiryan D, Iacopi F, Brongersma SH, Yanovitskaya ZS (2003) Low dielectric constant materials for microelectronics. Journal of Applied Physics 93:8793–8841

    CAS  Google Scholar 

  175. Morgen M, Ryan ET, Zhao JH, Hu C, Cho TH, Ho PS (2000) Low dielectric constant materials for ULSI interconnects. Annual Review of Materials Science 30:645–680

    CAS  Google Scholar 

  176. Semiconductor Industry Association (2004) International Technology Roadmap for Semiconductors. Semiconductor Industry Association, San Jose

    Google Scholar 

  177. Ho PKH, Friend RH (2002) pi-electronic and electrical transport properties of conjugated polymer nanocomposites: Poly(p-phenylenevinylene) with homogeneously dispersed silica nanoparticles. Journal of Chemical Physics 116:6782–6794

    CAS  Google Scholar 

  178. Maier G (2001) Low dielectric constant polymers for microelectronics. Progress in Polymer Science 26:3–65

    CAS  Google Scholar 

  179. Moylan CR, Best ME, Ree M (1991) Solubility of water in polyimides – quartz crystal microbalance measurements. Journal of Polymer Science Part B-Polymer Physics 29:87–92

    CAS  Google Scholar 

  180. Carter KR, DiPietro RA, Sanchez MI, Russell TP, Lakshmanan P, McGrath JE (1997) Polyimide nanofoams based on ordered polyimides derived from poly(amic alkyl esters): PMDA/4-BDAF. Chemistry of Materials 9:105–118

    CAS  Google Scholar 

  181. Carter KR, DiPietro RA, Sanchez MI, Swanson SA (2001) Nanoporous polyimides derived from highly fluorinated polyimide/poly(propylene oxide) copolymers. Chemistry of Materials 13:213–221

    CAS  Google Scholar 

  182. Mikoshiba S, Hayase S (1999) Preparation of low density poly(methylsilsesquioxane)s for LSI interlayer dielectrics with low dielectric constant. Fabrication of angstrom size pores prepared by baking trifluoropropylsilyl copolymers. Journal of Materials Chemistry 9:591–598

    CAS  Google Scholar 

  183. Azzam RMA, Bashara NM (1977) Ellipsometry and Polarized Light. North-Holland, Amsterdam

    Google Scholar 

  184. Licata TJ, Colgan EG, Harper JME, Luce SE (1995) Interconnect fabrication processes and the development of low-cost wiring for CMOS products. IBM Journal of Research and Development 39:419–435

    Google Scholar 

  185. Lee YJ, Huang JM, Kuo SW, Chang FC (2005) Low-dielectric, nanoporous polyimide films prepared from PEO-POSS nanoparticles. Polymer 46:10056–10065

    CAS  Google Scholar 

  186. Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou WZ, Fray DJ, Windle AH (2000) Carbon nanotube and polypyrrole composites: coating and doping. Advanced Materials 12:522–526

    CAS  Google Scholar 

  187. Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, McCarthy B, Maier S, Strevens A (1998) A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics. Advanced Materials 10:1091–1093

    CAS  Google Scholar 

  188. Dai L (1999) Effective bandwidths and performance bounds in high-speed communication systems. Journal of Optimization Theory and Applications 100:549–574

    Google Scholar 

  189. Saito Y, Uemura S, Hamaguchi K (1998) Cathode ray tube lighting elements with carbon nanotube field emitters. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 37:L346–L348

    CAS  Google Scholar 

  190. Downs C, Nugent J, Ajayan PM, Duquette DJ, Santhanam SV (1999) Efficient polymerization of aniline at carbon nanotube electrodes. Advanced Materials 11:1028–1031

    CAS  Google Scholar 

  191. Valter B, Ram MK, Nicolini C (2002) Synthesis of multiwalled carbon nanotubes and poly(o-anisidine) nanocomposite material: Fabrication and characterization of its Langmuir-Schaefer films. Langmuir 18:1535–1541

    CAS  Google Scholar 

  192. Zengin H, Zhou WS, Jin JY, Czerw R, Smith DW, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Carbon nanotube doped polyaniline. Advanced Materials 14:1480–1483

    CAS  Google Scholar 

  193. Coleman JN, Curran S, Dalton AB, Davey AP, McCarthy B, Blau W, Barklie RC (1998) Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Physical Review B 58:R7492–R7495

    CAS  Google Scholar 

  194. Lefrant S, Baibarac M, Baltog I, Godon C, Mevellec JY, Wery J, Faulques E, Mihut L, Aarab H, Chauvet O (2005) SERS, FT-IR and photoluminescence studies on single-walled carbon nanotubes/conducting polymers composites. Synthetic Metals 155:666–669

    CAS  Google Scholar 

  195. Woo HS, Czerw R, Webster S, Carroll DL, Park JW, Lee JH (2001) Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: the role of carbon nanotubes in a hole conducting polymer. Synthetic Metals 116:369–372

    CAS  Google Scholar 

  196. Kymakis E, Amaratunga GAJ (2002) Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Applied Physics Letters 80:112–114

    CAS  Google Scholar 

  197. Woo HS, Kim YB, Czerw R, Carroll DL, Ballato J, Ajayan PM (2004) Tailoring hole transport in organic light-emitting devices using carbon nanotube-polymer nanocomposites. Journal of the Korean Physical Society 45:507–511

    CAS  Google Scholar 

  198. Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung SW, Choi H, Heath JR (2001) Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angewandte Chemie-International Edition 40:1721–1725

    CAS  Google Scholar 

  199. Qi PF, Javey A, Rolandi M, Wang Q, Yenilmez E, Dai HJ (2004) Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes. Journal of the American Chemical Society 126:11774–11775

    CAS  Google Scholar 

  200. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320

    CAS  Google Scholar 

  201. Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Carbon nanotube single-electron transistors at room temperature. Science 293:76–79

    CAS  Google Scholar 

  202. Yao Z, Dekker C, Avouris P (2001) Carbon Nanotubes. 80:147–171

    CAS  Google Scholar 

  203. Duan XF, Huang Y, Lieber CM (2002) Nano Letters 2:487–490

    CAS  Google Scholar 

  204. Ouyang M, Huang JL, Cheung CL, Lieber CM (2001) Science 291:97–100

    CAS  Google Scholar 

  205. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Science 289:94–97

    CAS  Google Scholar 

  206. Avouris P (2002) Molecular Electronics with Carbon Nanotubes. Accounts of Chemical Research 35:1026–1034

    CAS  Google Scholar 

  207. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256

    CAS  Google Scholar 

  208. Banerjee S, Wong SS (2002) Functionalization of carbon nanotubes with a metal-containing molecular complex. Nano Letters 2:49–53

    CAS  Google Scholar 

  209. Banerjee S, Wong SS (2002) Structural characterization, optical properties, and improved solubility of carbon nanotubes functionalized with Wilkinson’s catalyst. Journal of the American Chemical Society 124:8940–8948

    CAS  Google Scholar 

  210. Banerjee S, Wong SS (2002) Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Letters 2:195–200

    CAS  Google Scholar 

  211. Dimitrakopoulos CD, Mascaro DJ (2001) Organic thin-film transistors: a review of recent advances. IBM Journal of Research and Development 45:11–27

    CAS  Google Scholar 

  212. Lodha A, Singh R (2001) Prospects of manufacturing organic semiconductor-based integrated circuits. IEEE Transactions on Semiconductor Manufacturing 14:281–296

    Google Scholar 

  213. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Applied Physics Letters 73:2447–2449

    CAS  Google Scholar 

  214. Ramamurthy PC, Malshe AM, Harrell WR, Gregory RV, McGuire K, Rao AM (2004) Polyaniline/single-walled carbon nanotube composite electronic devices. Solid-State Electronics 48:2019–2024

    CAS  Google Scholar 

  215. Kuo CT, Chiou WH (1997) Field-effect transistor with polyaniline thin film as semiconductor. Synthetic Metals 88:23–30

    CAS  Google Scholar 

  216. Javey A, Guo J, Paulsson M, Wang Q, Mann D, Lundstrom M, Dai HJ (2004) High-field quasiballistic transport in short carbon nanotubes. Physical Review Letters 92(10):106804/1–4

    CAS  Google Scholar 

  217. Snow ES, Novak JP, Lay MD, Houser EH, Perkins FK, Campbell PM (2004) Carbon nanotube networks: Nanomaterial for macroelectronic applications. Journal of Vacuum Science & Technology B 22:1990–1994

    CAS  Google Scholar 

  218. Seidel R, Graham AP, Unger E, Duesberg GS, Liebau M, Steinhoegl W, Kreupl F, Hoenlein W (2004) High-current nanotube transistors. Nano Letters 4:831–834

    CAS  Google Scholar 

  219. Seidel RV, Graham AP, Rajasekharan B, Unger E, Liebau M, Duesberg GS, Kreupl F, Hoenlein W (2004) Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes. Journal of Applied Physics 96:6694–6699

    CAS  Google Scholar 

  220. Tsvetkov MY, Kleshcheva SM, Samoilovich MI, Gaponenko NV, Shushunov AN (2005) Erbium photoluminescence in opal matrix and porous anodic alumina nanocomposites. Microelectronic Engineering 81:273–280

    CAS  Google Scholar 

  221. Suzuki N, Tomita Y (2003) Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films. Japanese Journal of Applied Physics Part 2-Letters 42:L927–L929

    CAS  Google Scholar 

  222. Siwick BJ, Kalinina O, Kumacheva E, Miller RJD, Noolandi J (2001) Polymeric nanostructured material for high-density three-dimensional optical memory storage. Journal of Applied Physics 90:5328–5334

    CAS  Google Scholar 

  223. Parthenopoulous DA, Rentzepis PM (1989) Science 245:843

    Google Scholar 

  224. Caruso RA, Antonietti M (2001) Sol–gel nanocoating: an approach to the preparation of structured materials. Chemistry of Materials 13:3272–3282

    CAS  Google Scholar 

  225. Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chemical Reviews 100:1777–1788

    CAS  Google Scholar 

  226. Malini KA, Anantharaman MR, Sindhu S, Chinnasamy CN, Ponpandian N, Narayanasamy A, Balachandran M, Pillai VNS (2001) Effect of cycling on the magnetization of ion exchanged magnetic nanocomposite based on polystyrene. Journal of Materials Science 36:821–824

    CAS  Google Scholar 

  227. Suzuki N, Tomita Y (2006) Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording. Optics Express 14:12712–12719

    CAS  Google Scholar 

  228. Kalinina O, Kumacheva E (2001) Nanostructured polymer films with liquid inclusions. 1. Structural blocks. Macromolecules 34:6380–6386

    CAS  Google Scholar 

  229. Kim E, Park J, Shin C, Kim N (2006) Effect of organic side-chains on the diffraction efficiency of an organic-inorganic hybrid nanocomposite film. Nanotechnology 17:2899–2906

    CAS  Google Scholar 

  230. Judeinstein P, Oliveira PW, Krug H, Schmidt H (1997) Photochromic organic-inorganic nanocomposites as holographic storage media. Advanced Materials for Optics and Electronics 7:123–133

    CAS  Google Scholar 

  231. Trentler TJ, Boyd JE, Colvin VL (2000) Epoxy resin-photopolymer composites for volume holography. Chemistry of Materials 12:1431–1438

    CAS  Google Scholar 

  232. Suzuki N, Tomita Y (2004) Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%. Applied Optics 43:2125–2129

    CAS  Google Scholar 

  233. Suzuki N, Tomita Y, Kojima T (2002) Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Applied Physics Letters 81:4121–4123

    CAS  Google Scholar 

  234. Tomita Y, Nishibiraki H (2003) Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyromethene dyes. Applied Physics Letters 83:410–412

    CAS  Google Scholar 

  235. Sanchez C, Escuti MJ, van Heesch C, Bastiaansen CWM, Broer DJ, Loos J, Nussbaumer R (2005) TiO2 nanoparticle-photopolymer holographic recording. Advanced Functional Materials 15:1623–1629

    CAS  Google Scholar 

  236. Koshida N, Gelloz B (1999) Wet and dry porous silicon. Current Opinion in Colloid & Interface Science 4:309–313

    CAS  Google Scholar 

  237. Altukhov PD, Kuzminov EG (1999) Condensation of a hot electron-hole plasma in tunneling silicon MOS structures. Solid State Communications 111:379–384

    CAS  Google Scholar 

  238. Green MA, Zhao JH, Wang AH, Reece PJ, Gal M (2001) Efficient silicon light-emitting diodes. Nature 412:805–808

    CAS  Google Scholar 

  239. Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F (2000) Optical gain in silicon nanocrystals. Nature 408:440–444

    CAS  Google Scholar 

  240. Simons AJ, Cox TI, Loni A, Canham LT, Blacker R (1997) Investigation of the mechanisms controlling the stability of a porous silicon electroluminescent device. Thin Solid Films 297:281–284

    CAS  Google Scholar 

  241. Sticht A, Neufeld E, Luigart A, Brunner K, Abstreiter G, Bay H (1998) Characteristics of surface and waveguide emitting SiGe: Er: O diodes. Journal of Luminescence 80:321–327

    CAS  Google Scholar 

  242. Amato G, Boarino L, Midellino D, Rossi AM (2000) Philosophical Magazine B 80:679

    CAS  Google Scholar 

  243. Lu ZH, Grozea D (2002) Crystalline Si/SiO2 quantum wells. Applied Physics Letters 80:255–257

    CAS  Google Scholar 

  244. Parisini A, Angelucci R, Dori L, Poggi A, Maccagnani P, Cardinali GC, Amato G, Lerondel G, Midellino D (2000) TEM characterisation of porous silicon. Micron 31:223–230

    CAS  Google Scholar 

  245. Lopez HA, Fauchet PM (2001) Infrared LEDs and microcavities based on erbium-doped silicon nanocomposites. Materials Science and Engineering B-Solid State Materials for Advanced Technology 81:91–96

    Google Scholar 

  246. Cristea D, Obreja P, Kusko M, Manea E, Rebigan R (2006) Polymer micromachining for micro- and nanophotonics. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 26:1049–1055

    CAS  Google Scholar 

  247. Lal M, Kumar ND, Joshi MP, Prasad PN (1998) Polymerization in a reverse micelle nano­reactor: Preparation of processable poly(p-phenylenevinylene) with controlled conjugation length. Chemistry of Materials 10:1065–1068

    CAS  Google Scholar 

  248. Lee J, Cho HJ, Cho NS, Hwang DH, Kang JM, Lim E, Lee JI, Shim HK (2006) Enhanced efficiency of polyfluorene derivatives: Organic-inorganic hybrid polymer light-emitting diodes. Journal of Polymer Science Part A-Polymer Chemistry 44:2943–2954

    CAS  Google Scholar 

  249. Ho PKH, Kim JS, Tessler N, Friend RH (2001) Photoluminescence of poly(p-phenylenevinylene)-silica nanocomposites: Evidence for dual emission by Franck-Condon analysis. Journal of Chemical Physics 115:2709–2720

    CAS  Google Scholar 

  250. An HY, Chen BJ, Hou JY, Shen JC, Liu SY (1998) Exciton confinement in organic multiple quantum well structures. Journal of Physics D-Applied Physics 31:1144

    CAS  Google Scholar 

  251. Yang SH, Nguyen TP, Le Rendu P, Hsu CS (2005) Optical and electrical investigations of poly(p-phenylene vinylene)/silicon oxide and poly(p-phenylene vinylene)/titanium oxide nanocomposites. Thin Solid Films 471:230–235

    CAS  Google Scholar 

  252. Lee TW, Park OO, Kim JJ, Hong JM, Kim YC (2001) Efficient photoluminescence and electroluminescence from environmentally stable polymer/clay nanocomposites. Chemistry of Materials 13:2217–2222

    CAS  Google Scholar 

  253. Nguyen T-Q, Wu J, Doan W, Schwartz BJ, Tolbert SH (2000) Science:288

    Google Scholar 

  254. Qian L, Zhang T, Wageh S, Jin ZS, Du ZL, Wang YS, Xu XR (2006) Study of blue electroluminescence from titania nanotubes doped into a polymeric matrix. Nanotechnology 17:100–104

    CAS  Google Scholar 

  255. Lee TW, Park OO, Hong JM, Kim DY, Kim YC (2001) Carrier mobilities of polymer/organo-clay nanocomposite electroluminescent devices. Thin Solid Films 393:347–351

    CAS  Google Scholar 

  256. Yokozumi T, Kim SH, Washino K, Lee HC, Ogion K, Usui H, Sato H (2003) Semiconducting nanocomposite from titanium dioxide and organic charge transporting compound. Synthetic Metals 139:151–154

    CAS  Google Scholar 

  257. Lee HC, Lee TW, Lim YT, Park OO (2002) Improved environmental stability in poly(p-phenylene vinylene)/layered silicate nanocomposite. Applied Clay Science 21:287–293

    CAS  Google Scholar 

  258. Lee TW, Park OO, Yoon J, Kim JJ (2001) Enhanced quantum efficiency in polymer/layered silicate nanocomposite light-emitting devices. Synthetic Metals 121:1737–1738

    CAS  Google Scholar 

  259. Senkevich JJ, Desu SB (1998) Poly(chloro-p-xylylene)/SiO2 multilayer thin films deposited near room temperature by thermal CVD. Thin Solid Films 322:148–157

    CAS  Google Scholar 

  260. Senkevich JJ, Desu SB (2000) Compositional studies of near-room-temperature thermal CVD poly(chloro-p-xylylene)/SiO2 nanocomposites. Applied Physics A-Materials Science & Processing 70:541–546

    CAS  Google Scholar 

  261. Ezhilvalavan S, Tseng TY (1999) Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application: A review. Journal of Materials Science: Materials in Electronics 10:9–31

    CAS  Google Scholar 

  262. Chashechnikova I, Dolgov L, Gavrilko T, Puchkovska G, Shaydyuk Y, Lebovka N, Moraru V, Baran J, Ratajczak H (2005) Optical properties of heterogeneous nanosystems based on montmorillonite clay mineral and 5CB nematic liquid crystal. Journal of Molecular Structure 744–747:563–571

    Google Scholar 

  263. Zhu W (2001) Vacuum Microelectronics. Wiley, New York

    Google Scholar 

  264. Bajic S, Latham RV (1988) Enhanced cold-cathode emission using composite resin-carbon coatings. Journal of Physics D: Applied Physics 21:200

    CAS  Google Scholar 

  265. Tsang WM, Stolojan V, Wong SP, Sealy BJ, Silva SRP (2005) The electron field emission properties of ion beam synthesized metal-dielectric nanocomposite layers on silicon substrates. Materials Science and Engineering B-Solid State Materials for Advanced Technology 124:453–457

    Google Scholar 

  266. http://www.nanotechproject.org/.

Download references

Acknowledgments

S.K. Samudrala acknowledges University of New South Wales for the Visiting Fellow Position in the School of Materials Science and Engineering.

Permissions from various publishers and authors to reproduce tables and figures in the manuscript are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sri Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Samudrala, S., Bandyopadhyay, S. (2009). Development of Hybrid Nanocomposites for Electronic Applications. In: Merhari, L. (eds) Hybrid Nanocomposites for Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30428-1_6

Download citation

Publish with us

Policies and ethics