Skip to main content

Development of Bioactive Organic–Inorganic Hybrids Through Sol–Gel Processing

  • Chapter
  • First Online:
Hybrid Nanocomposites for Nanotechnology

Abstract

Bioactive ceramics have attractive features for bone repair because they spontaneously bond to a living bone when implanted in bony defects. However their clinical application is limited to repairs requiring only low loads of material due to their insufficient mechanical performance such as higher brittleness and lower flexibility than those of natural bones. It has been reported that the essential condition for artificial materials to show bioactivity is the formation of bone-like apatite on their surfaces through chemical reactions with body fluids. Fundamental studies concerning apatite formation on bioactive glasses and glass-ceramics have reported that the formation of surface apatite is triggered by both the release of calcium ions and by Si–OH groups formed on the surface of materials. These findings led the authors of the present chapter to the idea that new bioactive materials with mechanical properties similar to those of natural bones can be designed by organic modification of calcium silicate. After a brief critical review of the state-of-the-art on artificial bones, the authors report on their work, emphasizing how bioactive organic–inorganic hybrids have been designed and developed from various organic polymers by addition of Si–OH groups and calcium ions. Similar chemical modification is also effective for providing conventional polymethylmethacrylate (PMMA)-based bone cement with bioactivity. The added-value of bioactive organic–inorganic hybrids is experimentally demonstrated while future prospects show the promises of such new bionanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hench LL, Wilson J (1993) An Introduction to Bioceramics. World Scientific, Singapore

    Google Scholar 

  2. Hench LL, Splinger RJ, Allen WC, Greenlee TK (1972) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 2:117–141

    Google Scholar 

  3. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  CAS  Google Scholar 

  4. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728

    Article  CAS  Google Scholar 

  5. Kokubo T, Shigematsu M, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T, Higashi S (1982) Apatite- and Wollastonite-containing glass-ceramics for prosthetic application. Bull Inst Chem Res Kyoto Univ 60:260–268

    CAS  Google Scholar 

  6. Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175

    Article  CAS  Google Scholar 

  7. Jarcho M (1976) Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 11:2027–2035

    Article  CAS  Google Scholar 

  8. Deptula A, Lada W, Olczak T, Borello A, Alvani C, Dibartolomeo A (1992) Preparation of spherical powders of hydroxyapatite by sol-gel process. J Non-Cryst Solids 147:537–541

    Article  Google Scholar 

  9. Jillavenkatesa A, Condrate RASr (1998) Sol-gel processing of hydroxyapatite. J Mater Sci 33:4111–4119

    Article  CAS  Google Scholar 

  10. Chai CS, Ben-Nissan B (1999) Bioactive nanocrystalline sol–gel hydroxyapatite coatings. J Mater Sci Mater Med 10:465–469

    Article  CAS  Google Scholar 

  11. Chow LC (1991) Development of self-setting calcium phosphate cements. J Ceram Soc Jpn 99:954–964

    Article  CAS  Google Scholar 

  12. Monma H (1987) Tricalcium Phosphate Ceramics Complexed with Hydroxyapatite. Yogyo-Kyokai-Shi 95:814–818

    Article  CAS  Google Scholar 

  13. Ohtsuki C, Kushitani H, Kokubo T, Kotani S, Yamamuro T (1991) Apatite formation on the surface of ceravital-type glass-ceramic in the body. J Biomed Mater Res 25:1363–1370

    Article  CAS  Google Scholar 

  14. Neo M, Kotani S, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T, Bando Y (1992) A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone. J Biomed Mater Res 26:1419–1432

    Article  CAS  Google Scholar 

  15. Ohtsuki C, Kokubo T, Neo M, Kotani S, Yamamuro T, Nakamura T, Bando Y (1991) Bone-bonding mechanism of sintered β-3CaO·P2O5. Phosphorus Res Bull 1:191–196

    Google Scholar 

  16. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 24:721–734

    Article  CAS  Google Scholar 

  17. Ohtsuki C, Aoki Y, Kokubo T, Bando Y, Neo M, Nakamura T (1995) Transmission electron microscopic observation of glass-ceramic A-W and apatite layer formed on its surface in a simulated body fluid. J Ceram Soc Jpn 103:449–454

    Article  CAS  Google Scholar 

  18. Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, Kitsugi T, Yamamuro T (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78:1769–1774

    Article  CAS  Google Scholar 

  19. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  CAS  Google Scholar 

  20. Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T, Nakamura T (2003) Preparation and assessment of revised simulated body fluid. J Biomed Mater Res 65A:188–195.

    Article  CAS  Google Scholar 

  21. Oonishi H, Kushitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji E, Sugihara T (1997) Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Ortho Rel Res 334:316–325

    Article  Google Scholar 

  22. Oonishi H, Murata N, Saito M, Wakitani S, Imoto K, Kim N, Matsuura M (1998) Comparison of bone growth behavior into spaces of hydroxyapatite and AW glass ceramic particles. In: LeGeros RZ, LeGeros JP (eds) Bioceramics Vol. 11. World Scientific, Singapore, pp. 411–414

    Google Scholar 

  23. Oonishi H, Hench LL, Wilson J, Tsuji E, Kin S, Yamamoto T, Mizokawa S (2000) Quantitative comparison of bone growth behavior in granules of Bioglass®, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res 51:37–46

    Article  CAS  Google Scholar 

  24. Kim HM, Himeno T, Kokubo T, Nakamura T (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26:4366–4373

    Article  CAS  Google Scholar 

  25. Kim HM, Himeno T, Kawashita M, Kokubo T, Nakamura T (2004) The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. J R Soc Interface 1:17–22.

    Article  Google Scholar 

  26. Ohtsuki C, Kokubo T, Yamamuro T (1992) Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids 143:84–92

    Article  CAS  Google Scholar 

  27. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 28:7–15

    Article  CAS  Google Scholar 

  28. Ohtsuki C, Kokubo T, Yamamuro T (1992) Compositional dependence of bioactivity of glasses in the system CaO-SiO2-Al2O3: its in vitro evaluation. J Mater Sci Mater Med 3:119–125

    Article  CAS  Google Scholar 

  29. Ohtsuki C, Osaka A, Kokubo T (1994) Effects of Al2O3 and TiO2 on bioactivity of CaO-SiO2 glasses. In Andersson OH, Yli-Urpo A (eds) Bioceramics Vol. 7. Butterworth-Heinemann, Oxford, pp. 73–78

    Google Scholar 

  30. Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater 2:231–239

    Article  CAS  Google Scholar 

  31. Takadama H, Kim HM, Kokubo T, Nakamura T (2000) Mechanism of apatite formation induced by silanol groups-TEM observation. J Ceram Soc Jpn 108:118–121

    Article  CAS  Google Scholar 

  32. Hu Y, Mackenzie JD (1992) Rubber-like elasticity of organically modified silicates. J Mater Sci 27:4415–4420

    Article  CAS  Google Scholar 

  33. Tsuru K, Ohtsuki C, Osaka A, Iwamoto T, Mackenzie JD (1997) Bioactivity of sol–gel derived organically modified silicates, Part I: in vitro examination. J Mater Sci Mater Med 8:157–161

    Article  CAS  Google Scholar 

  34. Chen Q, Miyaji F, Kokubo T, Nakamura T (1999) Apatite formation on PDMS-modified CaO-SiO2-TiO2 hybrids prepared by sol–gel process. Biomaterials 20:1127–1132

    Article  CAS  Google Scholar 

  35. Osaka A, Ohtsuki C, Tsuru K (1995) Preparation of bioactive polymers modified with silanol groups. In: Wilson J, Hench LL, Greenspan D (eds), Bioceramics Vol. 8. Elsevier Science, Oxford, pp. 441–445

    Google Scholar 

  36. Yabuta T, Tsuru K, Hayakawa S, Ohtsuki C, Osaka A (2000) Synthesis of bioactive organic–inorganic hybrid with γ-methacryloxypropyl trimethoxysilane. J Sol-Gel Sci Tech 19:745–748

    Article  CAS  Google Scholar 

  37. Miyazaki T, Ohtsuki C, Tanihara M (2003) Synthesis of bioactive organic–inorganic nanohybrid for bone repair through Sol–gel processing. J Nanosci Nanotech 3:511–515

    Article  CAS  Google Scholar 

  38. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science 2nd edition, Elsevier Academic Press, Amsterdam

    Google Scholar 

  39. Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T (1996) Apatite formation on silica gel in simulated body fluid: its dependence on structures of silica gels prepared in different media. J Biomed Mater Res (Appl. Biomater.) 33:145–151

    Article  CAS  Google Scholar 

  40. Cho SB, Miyaji F, Kokubo T, Nakanishi K, Soga N, Nakamura T (1998) Apatite formation on silica gel in simulated body fluid: effects of structural modification with solvent-exchange. J Mater Sci Mater Med 9:279–284

    Article  CAS  Google Scholar 

  41. Plueddemann EP (1991) Silane Coupling Agents 2nd edition, Plenum, New York

    Google Scholar 

  42. Brinker CJ, Scherer GW (1990) Sol–Gel Science, Academic Press, San Diego

    Google Scholar 

  43. Yamada A, Tsuru K, Hayakawa S, Osaka A (2002) Chitosan-organosiloxane hybrids for biomedical applications. In: Abstract of the 3rd Asian international Symposium on Biomaterials and Drug Delivery Systems

    Google Scholar 

  44. Rhee SH (2004) Bone-like apatite-forming ability and mechanical properties of poly(ε-caprolactone)/silica hybrid as a function of poly(ε-caprolactone) content. Biomaterials 25:1167–1175

    Article  CAS  Google Scholar 

  45. Mendes SC, Reis RL, Bovell YP, Cunha AM, van Blitterswijk CA, de Bruijn JD (2001) Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials 22:2057–2064

    Article  CAS  Google Scholar 

  46. Miyazaki T, Yasunaga S, Ishida E, Ashizuka M, Ohtsuki C (2005) Development of bioactive organic–inorganic hybrid based on starch. J Jpn Soc Powder and Powder Metall 52:360–363 (in Japanese)

    Article  CAS  Google Scholar 

  47. Kabra BG, Gehrke SH, Spontak RJ (1998) Microporous, responsive hydroxypropyl cellulose gels. 1. Synthesis and microstructure. Macromolecules 31:2166–2173

    Article  CAS  Google Scholar 

  48. Khor E. (2001) Chitin: Fulfilling a Biomaterials Promise, Elsevier, Amsterdam

    Google Scholar 

  49. Miyazaki T, Ohtsuki C, Tanihara M, Ashizuka M (2004) Apatite deposition on organic–inorganic hybrids prepared from chitin by modification with alkoxysilane and calcium salt. In: Barbosa MA, Monteiro FJ, Correia R, Leon B(eds), Bioceramics Vol. 16. Trans Tech Publications, Switzerland, pp. 545–548.

    Google Scholar 

  50. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    Article  CAS  Google Scholar 

  51. Chen BQ, Sun K, Zhang KB (2004) Rheological properties of chitin/lithium chloride, N,N-dimethyl acetamide solutions. Carbohydr Polym 58:65–69

    Article  CAS  Google Scholar 

  52. Kamitakahara M, Kawashita M, Miyata N, Kokubo T, Nakamura T (2004) Degradation of bioactive polydimethylsiloxane-CaO-SiO2-TiO2 and poly(tetramethylene oxide)-CaO-TiO2 hybrids in a simulated body fluid. J Am Ceram Soc 87:235–239

    Article  CAS  Google Scholar 

  53. Kühn KD (2000) Bone Cement. Springer, Berlin

    Book  Google Scholar 

  54. Harper EJ (1998) Bioactive bone cements. Proc Inst Mech Eng H 212:113–120

    CAS  Google Scholar 

  55. Shinzato S, Kobayashi M, Mousa WF, Kamimura M, Neo M, Kitamura Y, Kokubo T, Nakamura T (2000) Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. J Biomed Mater Res 51:258–272

    Article  CAS  Google Scholar 

  56. Ohtsuki C, Miyazaki T, Kyomoto M, Tanihara M, Osaka A (2001) Development of bioactive PMMA-based cement by modification with alkoxysilane and calcium salt. J Mater Sci Mater Med 12:895–899

    Article  CAS  Google Scholar 

  57. Miyazaki T, Ohtsuki C, Kyomoto M, Tanihara M, Mori A, Kuramoto K (2003) Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. J Biomed Mater Res 67A:1417–1423

    Article  CAS  Google Scholar 

  58. Mori A, Ohtsuki C, Sugino A, Kuramoto K, Miyazaki T, Tanihara M, Osaka A (2003) Bioactive PMMA-based bone cement modified with methacyloxypropyltrimetoxysilane and calcium salts - effects of calcium salts on apatite-forming ability. J Ceram Soc Jpn 111:738–742

    Article  CAS  Google Scholar 

  59. Kim HM, Miyaji F, Kokubo T, Nakamura T (1996) Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 32:409–417

    Article  CAS  Google Scholar 

  60. Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res A 64:164–170

    Article  Google Scholar 

  61. Uchida M, Kim HM, Kokubo T, Miyaji F, Nakamura T (2001) Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions. J Am Ceram Soc 84:2041–2044

    Article  CAS  Google Scholar 

  62. Uchida M, Kim HM, Miyaji F, Kokubo T, Nakamura T (2002) Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials 23:313–317

    Article  CAS  Google Scholar 

  63. Miyazaki T, Kim HM, Miyaji F, Kokubo T, Kato H, Nakamura T (2000) Bioactive tantalum metal prepared by NaOH treatment. J Biomed Mater Res. 50:35–42

    Article  CAS  Google Scholar 

  64. Miyazaki T, Kim HM, Kokubo T, Kato H, Nakamura T (2001) Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid. J Sol–gel Sci Tech 21:83–88

    Article  CAS  Google Scholar 

  65. Miyazaki T, Kim HM, Kokubo T, Ohtsuki C, Nakamura T (2001) Bonelike apatite formation induced on niobium oxide gels in simulated body fluid. J Ceram Soc Jpn 109:934–938

    Article  Google Scholar 

  66. Wakabayashi G, Miyazaki T, Ishida E, Ashizuka M, Kokubo T, Ohtsuki C (2003) Development of bioactive molybdenum metal by alkali treatment. In Okazaki M, Ishikawa K, Yamashita K, Doi Y, Ban S (eds), Archives of BioCeramics Research Vol. 3. Saga Printings, pp. 288–292

    Google Scholar 

  67. Tanahashi M, Matsuda T (1997) Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res 34:305–315

    Article  CAS  Google Scholar 

  68. Kawashita M, Nakao M, Minoda M, Kim HM, Beppu T, Miyamoto T, Kokubo T, Nakamura T (2003) Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials 24:2477–2484

    Article  CAS  Google Scholar 

  69. Miyazaki T, Ohtsuki C, Akioka Y, Tanihara M, Nakao J, Sakaguchi Y, Konagaya S (2003) Apatite deposition on polyamide films containing carboxyl group in a biomimetic solution. J Mater Sci Mater Med 14:569–574

    Article  CAS  Google Scholar 

  70. Kawai T, Ohtsuki C, Kamitakahara M, Miyazaki T, Tanihara M, Sakaguchi Y, Konagaya S (2004) Coating of apatite layer on polyamide films containing sulfonic groups by biomimetic process. Biomaterials 25:4529–4534

    Article  CAS  Google Scholar 

  71. Miyazaki T, Imamura M, Ishida E, Ashizuka M, Ohtsuki C, Tanihara M (2005) Apatite formation on organic–inorganic hybrid containing sulfonic group. In Li P, Zhang K, Colwell CWJr (eds), Bioceramics Vol. 17. Trans Tech Publications, Switzerland, pp. 725–728

    Google Scholar 

  72. Leonor IB, Kim HM, Balas F, Kawashita M, Reis RL, Kokubo T, Nakamura T (2005) Surface charge of bioactive polyethylene modified with -SO3H groups and its apatite inducing capability in simulated body fluid. In Li P, Zhang K, Colwell CWJr (eds) Bioceramics Vol. 17. Trans Tech Publications, Switzerland, pp. 453–456

    Google Scholar 

  73. Kamitakahara M, Kawashita M, Miyata N, Kokubo T, Nakamura T (2003) Apatite-forming ability and mechanical properties of CaO-free poly(tetramethylene oxide) (PTMO)-TiO2 hybrids treated with hot water. Biomaterials 24:1357–1363

    Article  CAS  Google Scholar 

  74. Kamitakahara M, Kawashita M, Miyata N, Kim HM, Kokubo T, Ohtsuki C, Nakamura T (2004) Apatite-forming ability and mechanical properties of poly(tetramethylene oxide) (PTMO)-Ta2O5 hybrids. In Barbosa MA, Monteiro FJ, Correia R, Leon B (eds), Bioceramics Vol. 16. Trans Tech Publications, Switzerland, pp. 521–524.

    Google Scholar 

  75. You C, Miyazaki T, Ishida E, Ashizuka M, Ohtsuki C, Tanihara M (2005) Apatite deposition on organic–inorganic hybrids synthesized from poly(vinyl alcohol) and various metal oxides. In Li P, Zhang K, Colwell CWJr (eds), Bioceramics Vol. 17. Trans Tech Publications, Switzerland, pp. 469–472

    Google Scholar 

  76. Huang RYM, Rhim JW (1993) Modification of poly(vinyl alcohol) using maleic-acid and its application to the separation of acetic-acid water mixtures by the pervaporation technique. Polym Int 30:129–135

    Article  CAS  Google Scholar 

  77. Gimenez V, Mantecon A, Cadiz V (1996) Modification of poly(vinyl alcohol) with acid chlorides and crosslinking with difunctional hardeners. J Polym Sci A Polym Chem 34:925–934

    Article  CAS  Google Scholar 

  78. Oka M, Ushio K, Kumar P, Ikeuchi K, Hyon SH, Nakamura T, Fujita H (2000) Development of artificial articular cartilage. Proc Inst Mech Eng H J Eng Med 214:59–68

    Article  CAS  Google Scholar 

  79. Kobayashi M, Oka M (2004) Characterization of a polyvinyl alcohol-hydrogel artificial articular cartilage prepared by injection molding. J Biomater Sci Polym Ed 15:741–751

    Article  CAS  Google Scholar 

  80. Nakashima K, Sawae Y, Murakami T (2005) Study on wear reduction mechanisms of artificial cartilage by synergistic protein boundary film formation. JSME Int J Ser C 48:555–561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Encouragement of Young Scientists ((B)16700365) of the Japanese Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Miyazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miyazaki, T., Kamitakahara, M., Ohtsuki, C. (2009). Development of Bioactive Organic–Inorganic Hybrids Through Sol–Gel Processing. In: Merhari, L. (eds) Hybrid Nanocomposites for Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30428-1_16

Download citation

Publish with us

Policies and ethics