Skip to main content

Polymer–Iron Oxide Based Magnetic Nanocomposites

  • Chapter
  • First Online:
Hybrid Nanocomposites for Nanotechnology

Abstract

The thrust to develop magnetic particles, both fundamentally and technologically, arose out of the necessity for application of this in many spheres of the human race. Physical and chemical properties of lower dimension (nanoscale) particles are very much different from their bulk counterpart. Magnetic nanocomposites depicted quite a few unique properties like very low as well as very high coercivity, superparamagnetism, blocking temperature etc., which opened up new vistas in this area. It was quite evident that iron oxide, in different phases and alloys formed the basic macroscopic magnetic material. In the past few decades it was clear that besides developing magnetic particles as a pure material, there arose a tremendous compulsion to probe into diversions for an inter disciplinary area engulfing chemical and biological sciences for the benefit of mankind. One such effort resulted in determining the compatibility of nano-scale magnetic particles (metal oxides, particularly iron oxide) with polymeric materials to form organic/inorganic composites. Amongst the many questions, which generated with time, a few have been typically selected and addressed in this chapter. This chapter primarily concentrates on ways to prepare (both chemical and physical processes), understand structural aspects, magnetic behavior, electrical and optical properties of polymer–iron oxide based magnetic nanocomposites. Some interesting applications are discussed at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge coupled device

CM:

Ceramic method

DTA:

Differential thermal analysis

FTIR:

Fourier transform infrared

GCR:

Glass-ceramic route

HEBM:

High-energy ball milling

IAA:

Iron (III) tris (3-allylacetylacetonate)

IO:

Iron oxide

IS:

Isomer shift

KG:

Kilo gauss

MBE:

Molecular beam epitaxy

MER:

Magnetite epoxy resins

MF:

Magnetic fluids

MS:

Mössbauer spectroscopy

MW:

Microwave

MZF:

Manganese zinc ferrite

nm:

Nanometer

NR :

Natural rubber

NZF:

Nickel zinc ferrite

PEG:

Polyethylene glycol

PMAA:

Poly-methacrylic acid

PVA:

Polyvinyl acetate

PVB:

Poly vinyl butyral

RFC :

Rubber ferrite composite

SEM:

Scanning electron microscopy

SGM :

Sol-gel method

TEM :

Transmission electron microscope

UV :

Ultra-violet

VSM :

Vibrating sample magnetometer

XPS :

X-ray photoelectron spectroscopy

XRD :

X-ray diffraction

mm :

Micrometer

m-XRF :

Micro-focus X-ray fluorescence

E a :

Anisotropy energy

E z :

Zeeman energy

H c :

Coercive force

H eff :

Hyperfine field

k :

Boltzmann’s constant

K :

Anisotropy constant

M s :

Saturation magnetization of individual domain

M sa :

Saturation magnetization of the assembly or assembled particles

M r :

Remanence magnetization

T B :

Blocking temperature

T c :

Curie temperature

T N :

Néel temperature

V :

Volume

Δ :

Quadrupole splitting

β :

Full width at half maximum (FWHM)

λ :

X-ray wavelength

τ :

Relaxation time

μ :

Magnetic moment

References

  1. Cullity BD. (1972) Introduction to Magnetic Materials. Addison-Wesley, Reading, MA, pp383–441.

    Google Scholar 

  2. Blundell SJ. (2001) Magnetism in Condensed Matter. Oxford University Press, New York, pp180–182.

    Google Scholar 

  3. Morrish AH. (1965) The Physical Principles of Magnetism. Wiley, New York, p360.

    Google Scholar 

  4. Bean C and Livingston J. (1959) Suppl. J. Appl. Phys. 30, p1205.

    Article  Google Scholar 

  5. Klug HP and Alexander LE. (1954) X-Ray Diffraction Procedures – For polycrystalline and Amorphous Materials. Wiley, New York, p687.

    Google Scholar 

  6. Pathak A and Pramanik P. (2001) Nanoparticles of Oxides Through Chemical Methods, PINSA 67 A(1), pp. 47–70.

    Google Scholar 

  7. Pierre AC. (1998) Introduction to Sol-Gel Processing. USA, Kluwer, p24–47; 110,161.

    Book  Google Scholar 

  8. Roy R. (1987) Ceramics by the solution sol-gel route. Science 238, pp1664–1669.

    Article  CAS  Google Scholar 

  9. De A. (2004) Low molecular weight polymer based nanostructured ferrite materials. In: Nano 2004 India: International Conference on Nano-Materials: Synthesis, Characterization and Alication, Kolkata, India. Tata McGraw-Hill, New Delhi, India, 496–498.

    Google Scholar 

  10. Pramanik P and Pathak A. (1994) A new chemical route for the preparation of fine ferrite powders. Bulletin of Materials Science 17, pp967–975.

    Article  CAS  Google Scholar 

  11. Pramanik P. (1999) A novel chemical route for the preparation of nanosized oxides, phosphates, vanadates, molybdates and tungstates. Bulletin of Materials Science 22, pp335–339.

    Article  CAS  Google Scholar 

  12. Valenzuela R. (1994) Magnetic Ceramics. Cambridge University Press, Cambridge, New York.

    Book  Google Scholar 

  13. Pal M, Brahma P, Chakravorty D, Bhattacharya D and Maiti HS. (1997) Preparation of nanocrystalline barium hexaferrite in a glass medium. Nanostructured Materials 8, pp731–738.

    Article  CAS  Google Scholar 

  14. Pal M, Das D, Chintalapudi SN and Chakravorty D. (2000) Preparation of nanocomposites containing iron and nickel-zinc ferrite. Journal of Materials Research 15, pp683–688.

    Article  CAS  Google Scholar 

  15. Stavroyiannis S, Panagiotopoulos I, Niarchous D. (1998) CoPt/Ag nanocomposites for high density recording media. Applied Physics Letters A 73, p3453

    Article  CAS  Google Scholar 

  16. Inoue N, Kawamura Y and Morimoto K. (1997) Molecular beam epitaxy: Handbook of Nanophase Materials (ed.) A N Goldstein. Marcel Dekker, New York, pp83–140.

    Google Scholar 

  17. Ping DH and Hono K. (1998) Partitioning of Ga and Co atoms in a Fe3B/Nd2Fe14B nanocomposite magnet. Journal of Applied Physics 83, p7769.

    Article  CAS  Google Scholar 

  18. McCormick PG, Miao WF, Smith PAI, Ding J and Street R. (1998) Mechanically alloyed nanocomposite magnets. Journal of Applied Physics 83, p6256.

    Article  CAS  Google Scholar 

  19. Craik DJ. (1975) Magnetic Oxides part 2. Wiley, New York, pp697–708.

    Google Scholar 

  20. Abraham VS, Swapna Nair S, Rajesh S, Sajeev US and Anantharaman MR. (2004) Magnetic field induced assembling of nanoparticles in ferrofluidic liquid thin film based on NixFe1–xFe2O4. Bulletin of Materials Science 27, pp155–161.

    Article  CAS  Google Scholar 

  21. Anantharaman MR, Sindhu S, Jagatheesan S, Malini KA and Kurian P. (1999) Dielectric properties of rubber ferrite composites containing mixed ferrites. Journal of Physics D: Applied Physics 32, pp1801–1810.

    Article  CAS  Google Scholar 

  22. Mohammed EM, Malini KA, Kurian P and Anantharaman MR. (2002) Modification of dielectric and mechanical properties of rubber ferrite composites containing manganese zinc ferrite. Materials Research Bulletin 37, pp753–768

    Article  CAS  Google Scholar 

  23. Tadakoro H. (1979) Structure of Polymers. Wiley-Interscience, San Francisco, pp213–214; 358; 381.

    Google Scholar 

  24. Yogo T, Nakamura T, Sakamoto W and Hirano S. (2000) Synthesis of transparent magnetic particle/organic hybrid films using iron-organics. Journal of Material Research 15(10), pp2114–2120.

    Article  CAS  Google Scholar 

  25. Palchik O, Felner I, Kataby G and Gedanken A. (2000) Amorphous iron oxide prepared by microwave heating. Journal of Materials Research 15(10), pp2176–2181.

    Article  CAS  Google Scholar 

  26. Chauhan P, Annapoorni S and Trikha SK. (1998) Preparation, characterization and optical properties of α-Fe2O3 films by sol-spinning process. Bulletin of Material Science 21, pp381–385.

    Article  CAS  Google Scholar 

  27. Jungk H-O and Feldmann C. (2000) Nanoagglomerated, submicron α-Fe2O3 particles: Preparation and alication. Journal of Material Research 15, pp2244–2248.

    Article  CAS  Google Scholar 

  28. Suri K, Annapoorni S and Tandon RP. (2001) Phase change induced by polypyrrole in iron-oxide polypyrrole nanocomposite. Bulletin of Materials Science 24, pp563–567.

    Article  CAS  Google Scholar 

  29. Venkatraman A, Hiremath VA, Date SK and Kulkarni SD. (2001) A new combustion route to γ-Fe2O3 synthesis. Bulletin of Materials Science 24, pp617–621.

    Article  Google Scholar 

  30. Bunn CW. (1948) Crystal structure of polyvinyl alcohol. Nature 161, pp929–930.

    Article  CAS  Google Scholar 

  31. Dhawan SK and Trivadi DC. (1993) Thin conducting polypyrrole film on insulating surface and its alications. Bulletin of Material Science 16, pp371–380.

    Article  CAS  Google Scholar 

  32. Deb P, Biswas T, Sen D, Basumallick A and Mazumder S. (2002) Characteristics of Fe2O3 nanoparticles prepared by heat treatment of a non-aqueous powder precipitate. Journal of Nanoparticle Research 4, pp91–97.

    Article  CAS  Google Scholar 

  33. Hiremath VA and Venkatraman A. (2003) Dielectric, electrical and infrared studies of γ-Fe2O3 prepared by combustion method. Bulletin of Material Science 26, p391–396.

    Article  CAS  Google Scholar 

  34. Waldron RD. (1955) Infrared spectra of ferrites. Physical Review 99, pp1727–1735.

    Article  CAS  Google Scholar 

  35. Yu S and Chow GM. (2004) Carboxyl group (–CO2H) functionalized ferromagnetic iron oxide nanoparticles for potential bio-applications. Journal of Materials Chemistry 14, pp2781

    Article  Google Scholar 

  36. Ziolo RF, Giannelis EP, Weinstein BA, O’Horo MP, Ganguly BN, Mehrotra V, Russell MW, and Huffman DR. (1992) Matrix-mediated synthesis of nanocrystalline γ-Fe2O3: A new optically transparent magnetic material. Science 257, pp219–223.

    Article  CAS  Google Scholar 

  37. Anantharaman MR, Malini KA, Sindhu S, Mohammed EM, Date SK, Kulkarni SD, Joy PA and Kurian P. (2001) Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites. Bulletin of Material Science 24, pp623–631.

    Article  CAS  Google Scholar 

  38. Thorpe AN, Senftle FE, Holt M, Grant J, Lowe W, Anderson H, Williams E, Monkres and Barkatt A. (2000) Magnetization, micro-X-ray fluorescence, and transmission electron microscopy studies of low concentrations of nanoscale Fe3O4 particles in epoxy resin. Journal of Materials Research 15, pp 2488–2493.

    Article  CAS  Google Scholar 

  39. Stauffer D. (1985) Introduction to Percolation Theory. Taylor & Francis, London.

    Book  Google Scholar 

  40. Kneller E. (1969) Magnetism and Metallurgy, Vol. 1, chapter 1 (eds.) Berkowitz A.E. and Kneller E. Academic, New York.

    Google Scholar 

  41. Xue S, Ousi-Benomar W and Lessard RA. (1994) a-Fe2O3 thin films prepared by metalorganic deposition from Fe (III) 2-ethylhexanoate. Thin Solid Films 250, pp194–201.

    Article  CAS  Google Scholar 

  42. Gadhvi M, Upadhyay RV, Parekh K and Mehta RV. (2004) Magnetically textured ferrofluid in a non-magnetic matrix: magnetic properties. Bulletin of Materials Science 27, pp163–168.

    Article  CAS  Google Scholar 

  43. Borch T, Biederman JA, Mogk DW, Butterfield PW, Camper AK and Jordan RN. (2003) Characterization of Two Iron Oxide Models for Environmental Research: Microscopic and Spectroscopic Studies – A Research Report. Center for Biofilm Engineering, Montana State University, Bozeman, MT.

    Google Scholar 

  44. Pankhurst QA, Connolly J, Jones SK and Dobson J. (2003) Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics 36, ppR167–R181.

    Article  CAS  Google Scholar 

  45. Shinkai M. (2002) Functional magnetic particles for medical application. Journal of Bioscience and Bioengineering 94, pp606–613.

    CAS  Google Scholar 

  46. Kačmár S, Koneracká M, Kopčanský P, Timko M, Sequiera A, De and Trevan M. (2001) Entrapment of anticancer drug 5 Fluorouracil in magnetoliposome vesicles. Zborník konf. SSB, 127.

    Google Scholar 

  47. Ziolo RF. (1994) Magnets-value of the first step. R&D Innovator 3(11), p127.

    Google Scholar 

  48. Kahn O. (1993) Molecular Magnetism. Wiley, Weinheim.

    Google Scholar 

  49. Samarth N. (2006) Semiconductor physics: Magnetic manipulations. Nature 442, pp359–360.

    Article  CAS  Google Scholar 

  50. Rubi D, Calleja A, Arbiol J, Capdevila XG, Segarra M, Aragonès LI and Fontcuberta J. (2005) Structural and magnetic properties of ZnO: TM (TM: Co, Mn) nanopowders. Journal of Magnetism and Magnetic Materials 316(2), ppe211–e214.

    Article  Google Scholar 

  51. Pal M and Pal M. (2005) Nanocrystalline Mn-doped ZnO by chemical route. Japanese Journal of Applied Physics 44, pp 7901–7903.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I (AD) am highly grateful to the Department of Science and Technology (DST) – Funds for Improvement in Science and Technology (FIST) for providing essential support to build the basic infrastructure for research and development, and the graduate advance laboratory for academic development in our department. I am also thankful to the University Grants Commission (UGC) to provide me scope and funds by granting me a project UGC-MNR (2002–2004) in an area which was fairly new to me. I thank all my colleagues in our department and members of my family who provided me the impetus and encouragement to complete this chapter despite of many shortcomings. I am indebted to Dr M. Pal who on my request joined me as coauthor, in the final stage, to make this chapter a success. Finally, I must thank Prof. L. Merhari for giving me the opportunity to form such a chapter, providing me constant guidance and attending to any of my queries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pal, M., De, A. (2009). Polymer–Iron Oxide Based Magnetic Nanocomposites. In: Merhari, L. (eds) Hybrid Nanocomposites for Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30428-1_11

Download citation

Publish with us

Policies and ethics