Skip to main content

Natamycin

  • Chapter
Food Preservatives

Abstract

Prevention of mold growth is an important issue for the food industry because economic losses due to fungal spoilage of foods can be considerable. Apart from some deliberately fermented foods, products containing visible molds or yeasts are generally not acceptable to the consumer. Also, from a health point of view it is necessary to prevent fungal growth on food products. Mycotoxins produced by spoilage fungi can cause various health problems, and some mycotoxins even have highly carcinogenic properties. Superficial removal of visible molds and yeasts from food products therefore gives no guarantee of safety to the consumer. Such treatment is not very effective and does not affect toxic fungal metabolites which could have been excreted and then diffused into the food product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, H.J. (1989) Development and application of an enzyme immunoassay for the detection of natamycin in food. Dissertation at the Veterinarian Faculty of the University of Munich, Germany.

    Google Scholar 

  • Athar, M.A. and Winner, H.I. (1971) The development of resistance by Candida species to polyene antibiotics in vitro. Journal of Medical Microbiology, 4, 505–517.

    Article  CAS  Google Scholar 

  • Ayres, J.C. and Denisen, E.L. (1958) Maintaining freshness of berries using selected packaging materials and antifungal agents. Food Technology, 12, 562–567.

    CAS  Google Scholar 

  • Ayres, J.C., Walker, H.W., Fanelli, M.J. et al. (1956) Use of antibiotics in prolonging storage life of dressed chicken. Food Technology, 10, 563–568.

    Google Scholar 

  • Baldini, P., Palmia, F., Raczynski, G. et al. (1979) Impiego della pimaricina nella prevenzione della crescita della muffe sui prodotti di salumeria italiani. Industria Conserve, 54, 305–307.

    Google Scholar 

  • Bärwald, G. (1976) Ãœber die Kaltenkeimung von Apfelsaft mit dem Fungicid Pimaricin. Die industrielle Obst-und Gemüseverwertung, 61, 453–458.

    Google Scholar 

  • Berry, D. (1999) Natamycin for shredded cheese. Dairy-Foods, 100, 45.

    Google Scholar 

  • Bolard, J. (1986) How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochimica et Biophysica Acta, 864, 257–304.

    Article  CAS  Google Scholar 

  • Brik, H. (1981) Natamycin. In Analytical Profiles of Drug Substances, Vol. 10 (ed. K. Florey ), Academic Press, New York, pp. 513–561.

    Google Scholar 

  • Brik, H. (1994) Natamycin (Supplement). In Analytical Profiles of Drug Substances and Excipients, Vol. 23 (ed. H.G. Brittain ), Academic Press, San Diego, pp. 399–419.

    Google Scholar 

  • Bulder, C.J.E.A. (1971) Anaerobic growth, ergosterol content, and sensitivity to a polyene antibiotic, of the yeast Schizosaccharomyces japonicus. Antonie van Leeuwenhoek, 37, 353–358.

    Article  CAS  Google Scholar 

  • Cattaneo, P., D’Aubert, S., and Righetti, A. (1978) Attivita antifungina della pimaricina in salami crudi stagionati. Industrie Alimentari, 17, 658–664.

    CAS  Google Scholar 

  • Ceder, O., Hansson, B., and Rapp, U. (1977) Pimaricin. VIII. Structural and configurational studies by electron impact and field desorption mass spectrometry, carbon-13 (25.2 MHZ) and proton (270 MHZ)-NMR spectroscopy. Tetrahedron, 33, 2703–2714.

    Article  CAS  Google Scholar 

  • Clark, W.L., Shirk, R.J., and Kline, E.F. (1964) Pimaricin, a new food fungistat. In Microbial Inhibitors in Food (ed. N. Molin ), Almquist and Wiksell, Uppsala, pp. 167–184.

    Google Scholar 

  • Daamen, C.B.G. and Van den Berg, G. (1985) Prevention of mould growth on cheese by means of natamycin. Voedingsmiddelentechnologie, 18, 26–29.

    Google Scholar 

  • Davidson, P.M. and Doan, C.H. (1993) Natamycin. In Antimicrobials in Foods (eds P.M. Davidson and A.L. Branen ), Marcel Dekker, New York, pp. 395–407.

    Google Scholar 

  • De Boer, E., Labots, M., Stolk-Horsthuis, M. et al. (1979) Sensitivity to natamycin of fungi in factories producing dry sausage. Fleischwirtschaft, 59, 1868–1869.

    Google Scholar 

  • De Boer, E. and Stolk-Horsthuis, M. (1977) Sensitivity to natamycin (pimaricin) of fungi isolated in cheese warehouses. Journal of Food Protection, 40, 533–536.

    Google Scholar 

  • De Kruijff, B., Gerritsen, W.J., Oerlemans, A. et al. (1974) Polyene antibiotic—sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. II. Temperature dependence of the polyene antibiotic—sterol complex formation. Biochimica et Biophysica Acta, 339, 44–56.

    Article  Google Scholar 

  • De Ruig, W.G. and Van den Berg, G. (1985) Influence of the fungicides sorbate and natamycin in cheese coatings on the quality of the cheese. Netherlands Milk and Dairy Journal, 39, 165–172.

    Google Scholar 

  • Demel, R.A., Crombag, F.J.L., Van Deenen, L.L.M., and Kinsky, S.C. (1968) Interaction of polyene antibiotics with single and mixed lipid molecular layers. Biochimica et Biophysica Acta, 150, 1–14.

    Article  CAS  Google Scholar 

  • Demel, R.A., Van Deenen, L.L.M., and Kinsky, S.C. (1965) Penetration of lipid monolayers by polyene antibiotics. Correlation with selective toxicity and mode of action. Journal of Biological Chemistry, 240, 2749–2753.

    CAS  Google Scholar 

  • Duplantier, A.J. and Masamune, S. (1990) Pimaricin. Stereochemistry and synthesis of its aglycon (pimarolide) methyl ester. Journal of the American Chemical Society, 112, 7079–7081.

    Article  CAS  Google Scholar 

  • Espinel-Ingroff, A., Bartlett, M., Bowden, R. et al. (1997) Multicenter evaluation of proposed standardized procedure for antifungal susceptibility testing of filamentous fungi. Journal of Clinical Microbiology, 35, 139–143.

    CAS  Google Scholar 

  • Fente-Sampayo, C.A., Vazquez-Belda, B., Franco-Abuin, C. et al. (1995) Distribution of fungal genera in cheese and dairies. Sensitivity to potassium sorbate and natamycin. Archiv für Lebensmittelhygiene, 46, 62–65.

    CAS  Google Scholar 

  • Frisvad, J.C., Samson, R.A., Rassing, B.R. et al. (1997) Penicillium discolor, a new species from cheese, nuts and vegetables. Antonie van Leeuwenhoek, 72, 119–126.

    CAS  Google Scholar 

  • Frisvad, J.C. and Thrane, U. (1995) Mycotoxin production by food-borne fungi. In Introduction to Food-borne Fungi, 4th edn (eds R.A. Samson et al.), Centraal Bureau voor Schimmelcultures, Baarn, pp. 251–260.

    Google Scholar 

  • Gale, E.F. (1984) Mode of action and resistance mechanisms of polyene macrolides. In Macrolide Antibiotics. Chemistry, Biology and Practice (ed. S. Omura ), Academic Press, New York, pp. 425–453.

    Google Scholar 

  • Gelda, C.S., Mathur, A.D., and Stersky, A.K. (1974) The retarding effect of the antifungal agent pimaricin on the growth of Aspergillus parasiticus. Proceedings IV International Congress of Food Science and Technology, 3, 261–265.

    Google Scholar 

  • Gourama, H. and Bullerman, L.B. (1988) Effects of potassium sorbate and natamycin on growth and penicillic acid production by Aspergillus ochraceus. Journal of Food Protection, 51, 139–144.

    CAS  Google Scholar 

  • Hamilton-Miller, J.M.T. (1973) Chemistry and biology of the polyene macrolide antibiotics. Bacteriological Reviews37, 166–196.

    Google Scholar 

  • Hamilton-Miller, J.M.T. (1974) Fungal sterols and the mode of action of the polyene antibiotics. Advances in Applied Microbiology, 17, 109–134.

    Article  CAS  Google Scholar 

  • Hammond, S.M. (1977) Biological activity of polyene antibiotics. In Progress in Medicinal Chemistry, Vol. 14 (eds G.P. Ellis and G.B. West ), North-Holland Publishing Company, Amsterdam, pp. 105–179.

    Google Scholar 

  • Hechelmann, H. and Leistner, L. (1969) Hemmung von unerwünschtem Schimmelpilzwachstum auf Rohwürsten durch Delvocid (Pimaricin). Fleischwirtschaft, 49, 1639–1641.

    Google Scholar 

  • Henninger, W. (1977) Die Abtötung von getränkeverderbenden Hefen durch Pimaricin. Das Erfrischungsgetränk Mineralwasser-Zeitung, 30, 1–6.

    Google Scholar 

  • Hoekstra, E.S., Van der Horst, M.I., Samson, R.A. et al. (1998) Survey of the fungal flora in Dutch cheese factories and warehouses. Journal of Food Mycology, 1, 13–22.

    Google Scholar 

  • Holley, R.A. (1981) Prevention of surface mold growth on Italian dry sausage by natamycin and potassium sorbate. Applied and Environmental Microbiology, 41, 422–429.

    CAS  Google Scholar 

  • Holley, R.A. (1986) Effect of sorbate and pimaricin on surface mold and ripening of Italian dry salami. Lebensmittel Wissenschaft und Technologie, 19, 59–65.

    CAS  Google Scholar 

  • Kerridge, D., Koh, T.Y., and Johnson, A.M. (1976) The interaction of Amphotericin B methyl ester with protoplasts of Candida albicans. Journal of General Microbiology, 96, 117–123.

    Article  CAS  Google Scholar 

  • Kiermeier, F. and Zierer, E. (1975) Zur Wirkung von Pimaricin auf Schimmelpilze und deren Aflatoxinbildung bei Käsen. Zeitschrift fiir Lebensmitteluntersuchung und Forschung, 157, 253–262.

    Article  CAS  Google Scholar 

  • Kinsky, S.C., Haxby, J., Kinsky, C.B. et al. (1968) Effect of cholesterol incorporation on the sensitivity of liposomes to the polyene antibiotic, filipin. Biochimica et Biophysica Acta, 152, 174–185.

    Article  CAS  Google Scholar 

  • Kotler-Brajtburg, J., Medoff, G., Kobayashi, G.S. et al. (1979) Classification of polyene antibiotics according to chemical structure and biological effects. Antimicrobial Agents and Chemotherapy, 15, 716–722.

    Article  CAS  Google Scholar 

  • Lancelin, J.M. and Beau, J.M. (1990) Stereostructure of pimaricin. Journal of the American Chemical Society, 112, 4060–4061.

    Article  CAS  Google Scholar 

  • Lancelin, J.M. and Beau, J.M. (1995) Stereostructure of glycosylated polyene macrolides–the example of pimaricin. Bulletin Société Chimie France, 132, 215–223.

    CAS  Google Scholar 

  • Lieske, K., Lieske, C., and Refai, M. (1983) Resistance determinations in mycology. GIT Supplement, 3, 41–43.

    Google Scholar 

  • Lodi, R., Todesco, R., and Bozzetti, V. (1989) Nouvelles applications de la natamycine sur des fromages typiques italiens. Microbiologie-Aliments-Nutrition, 7, 81–84.

    CAS  Google Scholar 

  • Lund, F., Filtenborg, O., and Frisvad, J.C. (1995) Associated mycoflora of cheese. Food Microbiology, 12, 173–180.

    Article  Google Scholar 

  • Malewicz, B. and Borowski, E. (1979) Energy dependence and reversibility of membrane alterations induced by polyene macrolide antibiotics in Chlorella vulgaris. Nature, 281, 80–82.

    CAS  Google Scholar 

  • Marriott, M.S. (1975) Isolation and chemical characterization of plasma membranes from the yeast and the mycelial forms of Candida albicans. Journal of General Microbiology, 86, 115–132.

    Article  CAS  Google Scholar 

  • Moerman, P.C. (1967) Evaluation of the fungicide pimaricin (Delvocid) for the prevention of mould growth on sausages. Vleesdistributie en Vleestechnologie, 2, 243.

    Google Scholar 

  • Moerman, P.C. (1972) Schimmelwering op vleeswaren door Pimaricine. Voedingsmiddelentechnologie, 3, 261–264.

    Google Scholar 

  • Morris, H.A. and Castberg, H.B. (1980) Control of surface growth on Blue cheese using pimaricin. Cultures Dairy Products Journal, 15, 21–23.

    CAS  Google Scholar 

  • Nadeau, P., Gruda, I., Medoff, G., and Brajtburg, J. (1982) Relative avidity of etruscomycin to cholesterol and ergosterol. Antimicrobial Agents and Chemotherapy, 21, 545–550.

    Article  CAS  Google Scholar 

  • Neviani, E., Emaldi, G.C., and Carini, S. (1981) L’impiego di pimaricina come antifungino sulle croste dei fro-maggi: Technologia e microflora di superficie. Latte, 6, 335–343.

    Google Scholar 

  • Nilson, K.M., Shahani, K.M., Vakil, J.R. et al. (1975) Pimaricin and mycostatin for retarding cottage cheese spoilage. Journal of Dairy Science, 58, 668–671.

    Article  CAS  Google Scholar 

  • Norman, A.W., Demel, R.A., De Kruijff, B. et al. (1972) Biological properties of polyene antibiotics. Comparison of other polyenes with filipin in their ability to interact specifically with sterol. Biochimica et Biophysica Acta, 290, 1–14.

    Article  CAS  Google Scholar 

  • Norman, A.W., Spielvogel, A.M., and Wong, R.G. (1976) Polyene antibiotic—sterol interaction. In Advances in Lipid Research, Vol. 14 (eds. R. Paoletti and D. Kritchevsky ), Academic Press, New York, pp. 127–170.

    Google Scholar 

  • Oldenkamp, E.P., Smink, D A, and Van Os, J.L. (1976) Antifungal compositions and method (natamycin and citric acid). U.S. Patent Application No. 76US-744513.

    Google Scholar 

  • Raab, W.P. (1974) Natamycin (Pimaricin). In Properties and Medical Applications,Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Ray, L.L. and Bullerman, L.B. (1982) Preventing growth of potentially toxic molds using antifungal agents. Journal of Food Protection, 45, 953–963.

    CAS  Google Scholar 

  • Sachdeva, S., Sing, S., Tiwari, B.D. et al. (1994) Effect of processing variables on the quality and shelf-life of processed cheese from buffalo milk Cheddar cheese. The Australian Journal of Dairy Technology, 49, 75–78.

    Google Scholar 

  • Scott, P.M. (1989) Mycotoxigenic fungal contaminants of cheese and other dairy products. In Mycotoxins in Dairy Products, 1st edn (ed. H.P. van Egmond ), Elsevier Science Publishers Ltd, Essex, pp. 193–259.

    Google Scholar 

  • Shirk, R.J. and Clark, W.L. (1963) The effect of pimaricin in retarding the spoilage of fresh orange juice. Food Technology, 17, 1062–1066.

    Google Scholar 

  • Staden, O.L. and Witmondt, M. (1967) Lecithine-pimaricine-perspectieven op hard fruit. De Fruitteelt, 57, 1180–1182.

    Google Scholar 

  • Struyk, A.P., Hoette, I., Drost, G. et al. (1957–1958) Pimaricin, a new antifungal antibiotic. Antibiotics Annual, 1957–1958, 878–885.

    Google Scholar 

  • Teerlink, T., De Kruyff, B., and Demel, R.A. (1980) The action of pimaricin, etruscomycin and amphotericin B on liposomes with varying sterol content. Biochimica et Biophysica Acta, 599, 484–492.

    Article  CAS  Google Scholar 

  • Thomas, A.H. (1986) Suggested mechanisms for the antimycotic activity of the polyene antibiotics and the N-substituted imidazoles. Journal of Antimicrobial Chemotherapy, 17, 269–279.

    Article  CAS  Google Scholar 

  • Ticha, J. (1975) A new fungicide, pimaricin, and its application in the baking industry. Mlynsko-Pekarensky Prumysl, 21, 225–228.

    CAS  Google Scholar 

  • Tortorello, M.L., Best, S., Batt, C.A. et al. (1991) Extending the shelf-life of cottage cheese: Identification of spoilage flora and their control using food grade preservatives. Cultured Dairy Products Journal, 26, 8–12.

    Google Scholar 

  • Van Rijn, F.T.J., Hoekstra, E.S., Van der Horst, M.I. et al. (1997) The occurrence of Penicillium discolor in the Dutch cheese industry. Voedingsmiddelentechnologie, 20, 19–23.

    Google Scholar 

  • Van Rijn, F.T.J., Stark, J., Tan, H.S. et al. (1995) A novel antifungal composition. U.S. Patent Application No. 08 /446, 782.

    Google Scholar 

  • Verma, H.S., Yadav, J.S., and Neelakantan, S. (1988) Preservative effect of selected antifungal agents on butter and cheese. Asian Journal of Dairy Research, 7, 34–38.

    CAS  Google Scholar 

  • Wyatt, R.D. and Brothers, A.M. (1997) The antifungal activity of natamycin in commercial poultry feed. Poultry Science, 76, 32.

    Google Scholar 

  • Yamanouchi. Pimafucin ® in fungal skin infections. Technical Bulletin. Leiderdorp, The Netherlands.

    Google Scholar 

  • Ziogas, B.N., Sisler, H.D., and Lusby, W.R. (1983) Sterol content and other characteristics of pimaricin-resistant mutants of Aspergillus nidulans. Pesticide Biochemistry and Physiology, 20, 320–329.

    Article  CAS  Google Scholar 

  • Zuthof, J.B.I. and Isidorus, J.B. (1981) Cheese manufacturing — flowing brine over mould pressed cheese in racks. GB Patent 2072481.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Stark, J., Tan, H.S. (2003). Natamycin. In: Russell, N.J., Gould, G.W. (eds) Food Preservatives. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30042-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-30042-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1006-9

  • Online ISBN: 978-0-387-30042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics