Skip to main content

Erythropoietin Neuroprotection in the Retina

  • Chapter
Erythropoietin and the Nervous System

Abstract

The cytokine erythropoietin (EPO) regulates production of red blood cells in an oxygen-dependent manner by inhibition of apoptosis of erythrocyte precursors in the bone marrow. EPO and EPO receptor protein are also expressed by CNS neurons and glial cells. EPO exerts neuroprotective effects in various experimental in vitro and in vivo models of neural injury, such as mechanical trauma, neuroinflammation, and cerebral and retinal ischemia. In this chapter, we will focus on the effects of EPO on lesioned retinal neurons, and discuss its potential value for treatment of retinal diseases. We will also summarize recent data regarding EPO signal transduction that underlies neuroprotection in retinal neuronal cell death models, including optic nerve transection or retinal ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aletsee C, Beros A, Mullen L, Palacios S, Pak K, Dazert S, Ryan AF (2001) Ras/MEK but not p38 signaling mediates NT-3-induced neurite extension from spiral ganglion neurons. J Assoc Res Otolaryngol 2:377–387.

    Article  PubMed  CAS  Google Scholar 

  • Barnabe-Heider F, Miller FD (2003) Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci 23:5149–5160.

    PubMed  CAS  Google Scholar 

  • Barres BA, Silverstein BE, Corey DP, Chun LL (1988) Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1:791–803.

    Article  PubMed  CAS  Google Scholar 

  • Bazan JF (1990) Haemopoietic receptors and helical cytokines. Immunol Today 11:350–354.

    Article  PubMed  CAS  Google Scholar 

  • Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651.

    Article  PubMed  CAS  Google Scholar 

  • Bernaudin M, Bellail A, Marti HH, Yvon A, Vivien D, Duchatelle I, Mackenzie ET, Petit E (2000) Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia 30:271–278.

    Article  PubMed  CAS  Google Scholar 

  • Bien A, Seidenbecher CI, Bockers TM, Sabel BA, Kreutz MR (1999) Apoptotic versus necrotic characteristics of retinal ganglion cell death after partial optic nerve injury. J Neurotrauma 16:153–163.

    Article  PubMed  CAS  Google Scholar 

  • Bocker-Meffert S, Rosenstiel P, Rohl C, Warneke N, Held-Feindt J, Sievers J, Lucius R (2002) Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Ophthalmol Vis Sci 43:2021–2026.

    PubMed  Google Scholar 

  • Bouscary D, Pene F, Claessens YE, Muller O, Chretien S, Fontenay-Roupie M, Gisselbrecht S, Mayeux P, Lacombe C (2003) Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood 101:3436–3443.

    Article  PubMed  CAS  Google Scholar 

  • Chong ZZ, Kang JQ, Maiese K (2003a) Apaf-1, Bcl-xL, cytochrome c, and caspase-9 form the critical elements for cerebral vascular protection by erythropoietin. J Cereb Blood Flow Metab 23:320–330.

    Article  PubMed  CAS  Google Scholar 

  • Chong ZZ, Lin SH, Kang JQ, Maiese K (2003b) Erythropoietin prevents early and late neuronal demise through modulation of Akt1 and induction of caspase 1, 3, and 8. J Neurosci Res 71:659–669.

    Article  PubMed  CAS  Google Scholar 

  • Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves crosstalk between Jak2 and NF-kappaB signalling cascades. Nature 412:641–647.

    Article  PubMed  CAS  Google Scholar 

  • Digicaylioglu M, Bichet S, Marti HH, Wenger RH, Rivas LA, Bauer C, Gassmann M (1995) Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci U S A 92:3717–3720.

    Article  PubMed  CAS  Google Scholar 

  • Dolznig H, Habermann B, Stangl K, Deiner EM, Moriggl R, Beug H, Mullner EW (2002) Apoptosis protection by the Epo target Bcl-X(L) allows factor-independent differentiation of primary erythroblasts. Curr Biol 12:1076–1085.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, Rustenbeck HH, Breiter N, Jacob S, Knerlich F, Bohn M, Poser W, Ruther E, Kochen M, Gefeller O, Gleiter C, Wessel TC, De Ryck M, Itri L, Prange H, Cerami A, Brines M, Siren AL (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495–505.

    PubMed  CAS  Google Scholar 

  • Fukunaga K, Miyamoto E (1998) Role of MAP kinase in neurons. Mol Neurobiol 16:79–95.

    PubMed  CAS  Google Scholar 

  • Garcia-Valenzuela E, Gorczyca W, Darzynkiewicz Z, Sharma SC (1994) Apoptosis in adult retinal ganglion cells after axotomy. J Neurobiol 25:431–438.

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Wenzel A, Groszer M, Mayser H, Seeliger M, Samardzija M, Bauer C, Gassmann M, Reme CE (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8:718–724.

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Wenzel A, Stanescu D, Samardzija M, Hotop S, Groszer M, Naash M, Gassmann M, Reme C (2004) Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration. J Neurosci 24:5651–5658.

    Article  PubMed  CAS  Google Scholar 

  • Ihle JN, Quelle FW, Miura O (1993) Signal transduction through the receptor for erythropoietin. Semin Immunol 5:375–389.

    Article  PubMed  CAS  Google Scholar 

  • Isenmann S, Wahl C, Krajewski S, Reed JC, Bähr M (1997) Up-regulation of Bax protein in degenerating retinal ganglion cells precedes apoptotic cell death after optic nerve lesion in the rat. Eur J Neurosci 9:1763–1772.

    Article  PubMed  CAS  Google Scholar 

  • Junk AK, Mammis A, Savitz SI, Singh M, Roth S, Malhotra S, Rosenbaum PS, Cerami A, Brines M, Rosenbaum DM (2002) Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. ProcNatl Acad Sci U S A 99:10659–10664.

    Article  CAS  Google Scholar 

  • Juul SE, Yachnis AT, Christensen RD (1998a) Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum Dev 52:235–249.

    Article  PubMed  CAS  Google Scholar 

  • Juul SE, Anderson DK, Li Y, Christensen RD (1998b) Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 43:40–49.

    PubMed  CAS  Google Scholar 

  • Kashii Y, Uchida M, Kirito K, Tanaka M, Nishijima K, Toshima M, Ando T, Koizumi K, Endoh T, Sawada K, Momoi M, Miura Y, Ozawa K, Komatsu N (2000) A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood 96:941–949.

    PubMed  CAS  Google Scholar 

  • Kermer P, Klöcker N, Bähr M (1999a) Long-term effect of inhibition of ced 3-like caspases on the survival of axotomized retinal ganglion cells in vivo. Exp Neurol 158:202–205.

    Article  PubMed  CAS  Google Scholar 

  • Kermer P, Klöcker N, Labes M, Bähr M (1998) Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. J Neurosci 18:4656–4662.

    PubMed  CAS  Google Scholar 

  • Kermer P, Klöcker N, Labes M, Bähr M (2000a) Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 In vivo. J Neurosci 20:2–8.

    PubMed  CAS  Google Scholar 

  • Kermer P, Klöcker N, Labes M, Thomsen S, Srinivasan A, Bähr M (1999b) Activation of caspase-3 in axotomized rat retinal ganglion cells in vivo. FEBS Lett 453:361–364.

    Article  PubMed  CAS  Google Scholar 

  • Kermer P, Klöcker N, Weishaupt JH, Bähr M (2001) Transection of the optic nerve in rats: studying neuronal death and survival in vivo. Brain Res Brain Res Protoc 7:255–60.

    Article  PubMed  CAS  Google Scholar 

  • Kermer P, Ankerhold R, Klöcker N, Krajewski S, Reed JC, Bähr M (2000b) Caspase-9: involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Brain Res Mol Brain Res 85:144–150.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi M, Tenneti L, Lipton SA (2000) Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 20:5037–5044.

    PubMed  CAS  Google Scholar 

  • Kim B, Leventhal PS, Saltiel AR, Feldman EL (1997) Insulin-like growth factor-I-mediated neurite outgrowth in vitro requires mitogen-activated protein kinase activation. J Biol Chem 272:21268–21273.

    Article  PubMed  CAS  Google Scholar 

  • Klöcker N, Cellerino A, Bähr M (1998) Free radical scavenging and inhibition of nitric oxide synthase potentiates the neurotrophic effects of brain-derived neurotrophic factor on axotomized retinal ganglion cells In vivo. J Neurosci 18:1038–1046.

    PubMed  Google Scholar 

  • Klöcker N, Kermer P, Gleichmann M, Weller M, Bähr M (1999) Both the neuronal and inducible isoforms contribute to upregulation of retinal nitric oxide synthase activity by brain-derived neurotrophic factor. JNeurosci 19:8517–8527.

    Google Scholar 

  • Klöcker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bähr M (2000) Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling. J Neurosci 20:6962–6967.

    PubMed  Google Scholar 

  • Konishi Y, Chui DH, Hirose H, Kunishita T, Tabira T (1993) Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res 609:29–35.

    Article  PubMed  CAS  Google Scholar 

  • Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248:378–381.

    PubMed  CAS  Google Scholar 

  • Kuperstein F, Yavin E (2002) ERK activation and nuclear translocation in amyloid-beta peptide-and iron-stressed neuronal cell cultures. Eur J Neurosci 16:44–54.

    Article  PubMed  Google Scholar 

  • Leppa S, Saffrich R, Ansorge W, Bohmann D (1998) Differential regulation of c-Jun by ERK and JNK during PC 12 cell differentiation. Embo J 17:4404–4413.

    Article  PubMed  CAS  Google Scholar 

  • Levin LA (2001) Animal and culture models of glaucoma for studying neuroprotection.

    Google Scholar 

  • Li Y, Juul SE, Morris-Wiman JA, Calhoun DA, Christensen RD (1996) Erythropoietin receptors are expressed in the central nervous system of mid-trimester human fetuses. Pediatr Res 40:376–380.

    PubMed  CAS  Google Scholar 

  • Liu C, Shen K, Liu Z, Noguchi CT (1997) Regulated human erythropoietin receptor expression in mouse brain. J Biol Chem 272:32395–32400.

    Article  PubMed  CAS  Google Scholar 

  • Liu ZY, Chin K, Noguchi CT (1994) Tissue specific expression of human erythropoietin receptor in transgenic mice. Dev Biol 166:159–169.

    Article  PubMed  CAS  Google Scholar 

  • Marti HH, Wenger RH, Rivas LA, Straumann U, Digicaylioglu M, Henn V, Yonekawa Y, Bauer C, Gassmann M (1996) Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8:666–676.

    Article  PubMed  CAS  Google Scholar 

  • Masuda S, Okano M, Yamagishi K, Nagao M, Ueda M, Sasaki R (1994) A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. J Biol Chem 269:19488–19493.

    PubMed  CAS  Google Scholar 

  • Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76:105–116.

    Article  PubMed  CAS  Google Scholar 

  • Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ (2000) Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 41:764–774.

    PubMed  CAS  Google Scholar 

  • Ratajczak J, Majka M, Kijowski J, Baj M, Pan ZK, Marquez LA, Janowska-Wieczorek A, Ratajczak MZ (2001) Biological significance of MAPK, AKT and JAK-STAT protein activation by various erythropoietic factors in normal human early erythroid cells. Br J Haematol 115:195–204.

    Article  PubMed  CAS  Google Scholar 

  • Robinson MJ, Stippec SA, Goldsmith E, White MA, Cobb MH (1998) A constitutively active and nuclear form of the MAP kinase ERK2 is sufficient for neurite outgrowth and cell transformation. Curr Biol 8:1141–1150.

    Article  PubMed  CAS  Google Scholar 

  • Sadamoto Y, Igase K, Sakanaka M, Sato K, Otsuka H, Sakaki S, Masuda S, Sasaki R (1998) Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 253:26–32.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Kitamura T, Yoshimura A (2000) Mitogen-activated protein kinase plays an essential role in the erythropoietin-dependent proliferation of CTLL-2 cells. J Biol Chem 275:35857–35862.

    Article  PubMed  CAS  Google Scholar 

  • Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A 95:4635–4640.

    Article  PubMed  CAS  Google Scholar 

  • Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T, Heumann R, Cerami A, Ehrenreich H, Ghezzi P (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 98:4044–4049.

    Article  PubMed  CAS  Google Scholar 

  • Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF (2001) Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 98:3261–3273.

    Article  PubMed  CAS  Google Scholar 

  • Uddin S, Kottegoda S, Stigger D, Platanias LC, Wickrema A (2000) Activation of the Akt/FKHRL1 pathway mediates the antiapoptotic effects of erythropoietin in primary human erythroid progenitors. Biochem Biophys Res Commun 275:16–19.

    Article  PubMed  CAS  Google Scholar 

  • Weishaupt JH, Diem R, Kermer P, Krajewski S, Reed JC, Bähr M (2003a) Contribution of caspase-8 to apoptosis of axotomized rat retinal ganglion cells in vivo. Neurobiol Dis 13:124–135.

    Article  PubMed  CAS  Google Scholar 

  • Weishaupt JH, Rohde G, Polking E, Siren AL, Ehrenreich H, Bähr M (2004) Effect of erythropoietin axotomy-induced apoptosis in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 45:1514–1522.

    Article  PubMed  Google Scholar 

  • Weishaupt JH, Kussmaul L, Grotsch P, Heckel A, Rohde G, Romig H, Bähr M, Gillardon F (2003b) Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol Cell Neurosci 24:489–502.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura A, Misawa H (1998) Physiology and function of the erythropoietin receptor. Curr Opin Hematol 5:171–176.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Rohde, G., Bähr, M., Weishaupt, J.H. (2006). Erythropoietin Neuroprotection in the Retina. In: Höke, A. (eds) Erythropoietin and the Nervous System. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-30011-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-30011-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-30010-8

  • Online ISBN: 978-0-387-30011-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics